Аллергия на максатазу (протеолитический фермент) у подростков

Содержание страницы:

Протеолитические процессы в патогенезе анафилаксии

В наиболее ранних экспериментальных работах, посвященных роли протеолиза в анафилаксии, было показано, что аптиген увеличивает активность протеолитических ферментов в организме сенсибилизированного животного. Предполагали, что протеазы разрушают антиген, в результате чего из него высвобождается гистамип. Однако вскоре было выяснено, что при анафилактическом шоке образуется гораздо больше гистамина, чем могло бы образоваться из антигена (Schild, 1936). Согласно другой точке зрения, протеолитические ферменты вызывают образование токсических продуктов ,из сывороточных белков. Rocha e Silva (1943) показал, что введение трипсина при анафилаксии вызывает освобождение гистамина. Он полагал, что гистамин соединен в ткани с карбоксильной группой протеина через пептидную связь. Однако трихлоруксусная кислота, которая не расщепляет пептидных связей, тем не менее способна вызывать освобождение гистамина из тканей. Указывали, что гистамин может быть соединен с белком через водородпые мостики и освобождается при протеолизе (Ungar, 1956).

Природа сывороточных протеаз, активируемых при анафилактическом шоке и других аллергических реакциях, также не вполне изучена. Ungar,. применявший в качестве субстрата для оценки протеолитической активности крови фибриноген, придает наибольшее значение в механизме активации протеолиза при аллергии фибринолизину, определяемому в настоящее время как система плазминоген — плазмин.

Согласно представлениям Ungar, реакция аллерген — антитело прет анафилактическом шоке активирует в плазме крови различные киназы ш предшественники, которые в свою очередь воздействуют на системы плазминоген — плазмин и калликреиногеп — калликреин. Активируется также-эстераза первого компонента комплемента (С).

В результате из а-глобулина плазмы крови образуются биологически активные продукты протеолиза — полипептиды (каллидиноген — калли-дин, брадикининоген — брадикинин и др.), участвующие в механизме расстройств кровообращения и других проявлениях анафилактического шока

Взаимоотношения этих процессов Ungar представляет в виде следующей схемы (схема 12).

Увеличение протеолитической активности сенсибилизированных тканей под влиянием разрешающего воздействия антигена было показано в опытах па срезах, а также в тканевой культуре или в экстрактах различных тканей. Ungar (1947) показал выраженное увеличение протеолитической активности в срезах легкого, печени и почки у морской свинки, сенсибилизированной к яичному альбумину, при применении фибрииоге-но-тромбиповой техники оценки активности тканевых протеаз.

Humphray и Jaques (1955) наблюдали увеличение протеолитической активности плазмы крови по отношению к казеину и денатурированному гемоглобину после прибавления к плазме специфического аллергена (полисахарид III типа пневмококка). Увеличение протеолитической активности коррелировало в этих опытах с процессом освобождения гистамина и серотопипа из кровяных пластинок, находившихся в исследуемых количествах плазмы. Оксалат, цитрат и тетраацетат этилендиамина подавляли как протеолиз, так и освобождение указанных медиаторов. Некоторое увеличение протеолитической активности экстрактов легких морских свинок под влиянием специфического аллергана наблюдал Herberts (1949). Протеаза имела оптимум рН 5,0—5,5 и активировалась цистеином.

Ungar с соавт. (1961) показали, что при анафилактической и анафи-лактоидпой реакциях активируются эстеразы, гидролизугощие многие синтетические эфиры аминокислот. Эти эстеразы Ungar относит также к пеп-тидазам. В качестве эфиров аминокислот, использованных Ungar для работы, были п-толуилсульфил-1-аргииип-этиловый эфир, бензолил-1-арги-нин-этиловый эфир, N-ацетил-1-триптофан-этиловый эфир, N-ацетил-1-ти-розил-этиловый эфир и др.

Вещества, подавляющие протеолиз (например, салицилат натрия), тормозят освобождение гистамина. Несмотря на это, многие авторы полагают, что протеолиз и освобождение гистамина не причзинносвязаиные, а параллельные явления, имеющие общую причину (Ungar, 1958).

Антиген активирует также протеазы в сыворотке крови морской свинки. Эта активация наблюдается после удаления газ сыворотки нормального ингибитора. Сыворотка содержит также активатор протеолиза, который разрушается при 56°С и, по-видимому, идентичен с одним из компонентов комплемента. Думали, что протеаза относится к типу фибринолизина, так как она растворяет фибрин,, но в дальнейшем выяснилось, что это, по-видимому, другой фермент.

Сравнение свойств и условий действия протеаз при анафилактическом шоке с протеазой типа химотрипсина, а также с комплементом приведено в табл. 48.

Как следует из табл. 48, протеазы при анафилаксии во многом отличаются как ют химотрипсина, так и от комплемента. Вероятнее всего, анафилактическая протеаза представляет собой комплекс ферментов, относящихся к системам плазминоген — плазмин, калликреиноген — калли-креин и др. В группу анафилактических ферментов относят также гисти-диндекарбоксилазу, полипептидазу В и многие другие вещества, продуктами их деятельности являются биологически активные амины и пептиды — брадикишга, каллидипы и др.

Протеолитическая гипотеза механизма аллергических вызывает ряд замечаний. С одной стороны, не все исследователи находили активацию протеолиза при анафилактическом шоке и других аллергических реакциях, с другой — активация протеолиза наблюдается при патологических процессах, не имеющих ничего общего с анафилаксией и аллергией.

Mclntire (1956) не обнаружил параллелизма между освобождением гистамина и активностью протеаз в крови у кролика при анафилактическом шоке. Он не наблюдал также активации протеолиза при анафилактическом шоке у этих животных. Jemsky, Flick и Steinbring (1953) не обнаружили активации протеаз в крови при анафилактическом шоке у морских свинок.

G. М. Лейтес (1938) наблюдал у кроликов в период сенсибилизации к лошадиной сыворотке некоторое увеличение протеолитической активности сыворотки крови. Однако после анафилактического шока он отметил резкое понижение протеолиза в крови этих животных.

Различия в результатах авторов, исследовавших протеолиз при анафилактическом шоке, по-видимому, объясняются разной тяжестью шока у подопытных животных, различными сроками забора крови и мочи для исследований и другими неучитываемыми условиями опытов. Следует поэтому согласиться с авторами, которые рассматривают активацию протеолиза при анафилаксии как явление, параллельное основному процессу аллергической альтерации тканей. Активация протеолиза наблюдается при многих процессах, пе имеющих отношения к аллергии, — при травматическом шоке, при ожоговых и радиационных повреждениях, при действии на организм бактериальных эндотоксинов и пирогонных агентов, а также при действии животных ядов.

Протеолитические ферменты. Свойства ферментов. Действие протеолитических ферментов

Усвояемость пищи во многом зависит от качества ее переработки в организме человека. Переваривание пищи считается сложным процессом, в котором участвуют высокоактивные соединения белкового происхождения, способные ускорять процесс расщепления белковых, углеводных, липидных молекул до более мелких фрагментов.

Пищеварительные энзимы

Ферменты пищеварительной системы продуцируются клетками желез, секрет которых выделяется в пищеварительный тракт. Процесс расщепления сложных соединений является строго избирательным, поэтому существуют основные группы ферментов, способные воздействовать только на нуклеотидные, белковые, углеводные, жировые молекулы.

Действие пищеварительных ферментов

Ферменты пищеварительного тракта делятся на липазы, протеазы, амилазы, нуклеазы, нуклеотидазы.

Липазами называют ферменты, продуцируемые секреторными клетками в поджелудочной железе и желудке. Основное их назначение заключается в расщеплении липидов и поступлении их в кровь.

Амилазы служат для переваривания углеводных составляющих пищи, чтобы отдельные их фрагменты могли легко проникнуть в кровоток. К таким энзимам относят амилазу и мальтазу в слюне ротовой полости, лактазу в поджелудочном и кишечном соке.

Нуклеазы панкреатического секрета способны расщеплять кислоты нуклеиновые до нуклеотидов, а те в свою очередь под действием нуклеотидаз кишечного сока распадаются на нуклеозиды.

Ферментный состав слюны

В ротовой полости начинается процесс переваривания пищи, который связан с размачиванием сухих частиц слюной и первичным расщеплением углеводных составляющих. Ферменты слюны, в частности амилазы, оказывают воздействие на молекулы крахмала, превращая их в мальтозу. Жиры и белки пищи не подвергаются никаким химическим превращениям в полости рта.

Существуют и такие ферменты слюны, которые способны подвергать разрушению клеточную стенку вредоносных бактерий. Происходит это за счет гидролиза муреиновых структур оболочки. Именно поэтому слюна обладает бактерицидным действием.

Характеристика пищеварительных ферментов

Только соблюдение правильного питания и отсутствие вредных привычек позволит работать органам пищеварения в полную силу.

Подходящей температурой для нормального функционирования энзимов в организме является 36,6-37 градусов. Горячие блюда вызывают ожог слизистой оболочки в пищеводе и разрушение ферментных соединений. Происходит спазм гладких мышц желудочной стенки, вследствие чего неподготовленная пища поступает в 12-перстную кишку. Это приводит к расстройствам кишечника и всевозможным заболеваниям органов пищеварения.

Водородный показатель среды влияет на свойства ферментов, в частности на их активность. При разных концентрациях ионов водорода активные участки ферментного белка и субстрат ионизируются в разной степени.

Специфические свойства ферментов связаны с распознаванием химической структуры веществ, которые подвергаются расщеплению. Даже для двух изомеров одного вещества существуют свои энзимы.

Что такое протеолитические ферменты?

Протеазы являются гидролитическими ферментами, способными расщеплять связи пептидов и белков и восстанавливать полезные бактерии в кишечнике. Наличие химозина и пепсина в желудочном соке, химотрипсина, трипсина, эрепсина в кишечном секрете, карбоксипептидазы в панкреатическом соке говорит о разнообразии протеолитических ферментов.

Благодаря позиционной и субстратной специфичности этих энзимов происходит выбор участок разрыва в длинной пептидной цепочке гидролизуемой белковой или пептидной молекулы.

Протеолитические ферменты, в зависимости от места действия, бывают экзопептидазами, которые способны разрывать концевые связи, и эндопептидазами, осуществляющие гидролиз внутренних связей в белковой молекуле.

Пептидные связи на С- и N-конце белковой цепочки расщепляются карбоксипептидазой и аминопептидазой, относящимися к экзопептидазам. Существуют еще дипептидазы, разрывающие связь в дипептидах.

Эндопептидазы, в зависимости от структуры активного элемента, разделяются на:

  • сериновые, в составе их активного центра содержится сериновый и гистидиновый остаток;
  • цистеиновые, в составе их активного центра содержится SH-группа от цистеинового остатка;
  • карбоксильные, в составе их активного центра содержится СООН-группа от остатка аспарагината;
  • металлопротеиназу, в составе активного центра содержится ион металла.

На избирательность действия протеаз влияет аминокислотная структура остатков, их радикалы, пространственная конфигурация субстрата. Большинство протеаз реагируют на определенную структуру аминокислотных остатков, расположенных возле связи, которую разрывают. Например, трипсиновый фермент катализирует расщепление соединения между основными аминокислотами (лизином и аргинином), имеющими карбоксильную группу.

Протеолитические ферменты типа химотрипсина, пепсина реагируют на гидрофобный фенилаланиновый, тирозиновый, триптофановый и лейциновый остаток и разрывают возле них связи. Для действия эластазы поджелудочного сока важно наличие у аминокислотного остатка небольшого бокового ответвления, которые имеются у аланина и серина.

Структура протеолитических ферментов

Молекула протеазы представляет собой линейную цепочку из аминокислот, свернутую в глобулу и обладающую уникальным действием на белки. Поверхность протеолитических ферментов имеет впадину для связывания субстрата.

Несколько белковых цепочек могут объединяться в комплекс, а собранные таким образом глобулы образуют третичную структуру ферментов. Для активации многих протеаз кофакторами являются ионы Са 2+ и Mg 2+ .

Существуют протеолитические ферменты, которые соединены с мембранной оболочкой клеток и воздействуют на определенную белковую структуру. Примером может служить сигнальная протеаза, ответственная за транспорт белковых молекул из клеток в межклеточную область.

Ингибирование протеолитических ферментов

Некоторые заболевания пищеварительной системы вызваны чрезмерной деятельностью протеаз, например, состояние острого панкреатита. Активаторами ферментов, продуцируемых поджелудочной железой, являются цитокиназы. С их помощью образуется трипсин из трипсиногена, происходят превращения проэластазы, калликреиногена, химотрипсиногена в активные формы ферментов. В результате их действия в поджелудочной железе наблюдается переваривание ткани собственным секретом, а затем отек и кровоизлияние этого органа.

Ингибиторы протеолитических ферментов направлены на подавление их ферментативной деятельности. Использование для внутривенных инъекций лекарственных средств на основе тразилола, пантрипина и контрикала позволяет снизить активность протеаз и снять воспалительные процессы в поджелудочной железе.

Острота заболевания во многом зависит от трипсин-ингибиторной системы. При достаточном содержании ингибиторного вещества происходит нейтрализация активированного фермента с восстановлением равновесия. Недостаток ингибитора приводит к дальнейшему развитию заболевания.

Роль протеаз

На многие процессы в организме человека влияет действие протеолитических ферментов. Без их участия не произойдет оплодотворение, свертывание белка крови, фибринолиз, биосинтез белковых молекул, иммунные реакции, гормональная регуляция.

Нарушение работы протеаз вызывает мышечную дистрофию, заболевания аутоиммунного характера, легочную эмфизему, воспаление поджелудочной железы.

На основе протеолитических ферментов разработан ряд препаратов, позволяющих корректировать пищеварение, заживлять ранения и ожоги.

Протеазы применяют для изготовления питания для парэнтерального введения, для производства препаратов на основе гормонов и антибиотических средств.

Получают ферменты из внутренних органов и желез животных (крупный рогатый скот и свиньи) и из растительного субстрата (плодовый латекс дынного дерева).

Протеолиз

I

Протеолиз (проте [ины] (Протеины) + lysis разложение, распад)

ферментативный гидролиз белков и пептидов, катализируется протеолитическими ферментами (пептид-гидролазами, протеазами) и играет важную роль в регуляции обмена веществ в организме. С протеолизом связаны такие фундаментальные процессы жизнедеятельности, как внутриклеточный распад белков (Белки) и регуляция их кругооборота (см. Азотистый обмен), Пищеварение, оплодотворение, морфогенез, защитные реакции (см. Иммунитет), адаптационные перестройки обмена. Нарушение П. и его регуляции лежит в основе развития многих патологических состояний.

Различают два типа протеолиза: приводящий к полному расщеплению белковых молекул до отдельных аминокислот и частичный, так называемый ограниченный протеолиз, при котором избирательно гидролизуется одна или несколько пептидных связей в молекуле белка. Протеолиз первого типа происходит в результате согласованного действия различных протеолитических ферментов, тогда как реакции ограниченного П. катализируются отдельными специфическими протезами. Полный П. осуществляется при внутриклеточном распаде белков под влиянием тканевых протеаз (часто называемых катепсинами). Он протекает во многих случаях внутри лизосом — клеточных органелл, содержащих набор гидролитических ферментов. Путем полного П. происходит удаление из организма аномальных белков, образующихся в результате мутаций и ошибок биосинтеза. Полное расщепление белковых молекул наблюдается также при различных морфогенетических превращениях и адаптационных перестройках обмена. В процессах пищеварения под влиянием протеолитических ферментов желудочно-кишечного тракта Пепсина, Трипсина, Химотрипсина и ряда пептидаз происходит полный П. белков пищи.

Ограниченный П. белковых молекул имеет первостепенное значение для регуляции обмена веществ в организме. Реакции ограниченного П. участвуют в процессе образования и инактивации практически всех ферментов, гормонов и других биологически активных белков и пептидов и, следовательно, в контроле активности основных биорегуляторов. Например, ограниченный П. происходит при превращении неактивных проферментов пепсиногена, трипсиногена и др. в соответствующие активные протеазы, а также при образовании ферментов, участвующих в свертывании крови, фибринолизе, активации системы комплемента, ренин-ангиотензинной и калликреин-кининовой систем и др. Эти системы организма активируются в результате каскадного процесса, на каждой из стадий которого из неактивного профермента путем ограниченного П. образуется фермент, катализирующий последующую реакцию. Примером роли ограниченного П. в биогенезе гормонов может служить специфический гидролиз ряда пептидных связей в молекуле проопиомеланокортина (см. Регуляторные пептиды), в результате которого из этого полифункционального биосинтетического предшественника образуются АКТГ, β-липотропин, эндорфины, меланоцитостимулирующие гормоны, из проинсулина — инсулин, из проглюкагона — глюкагон. Таким же образом из своих неактивных предшественников образуются факторы роста и другие регуляторные пептиды. При некоторых эндокринных заболеваниях, например наследственной проинсулинемии, нарушен ограниченный П. проинсулина. Основным молекулярным механизмом образования, инактивации и модификации различных нейропептидов также является ограниченный П., который тем самым играет существенную роль в реализации таких нейрофизиологических процессов, как память, боль, поведенческие реакции и др.

Ограниченный П. представляет собой один из основных механизмов посттрансляционной модификации — процессинга белков, этапа, на котором из вновь синтезированных полипептидных цепей формируются «зрелые» белковые молекулы. С помощью ограниченного П. образуются функционально активные белки и пептиды не только у высших, но и у простейших организмов. Так, путем ограниченного П. из вирусного полипротеина получаются специфические белки различных вирусов, т.е. ограниченный П. является одним из важнейших механизмов репродукции вирусов и играет большую роль в развитии вирусных инфекций.

В организме различные белки имеют разную продолжительность жизни: для одних белков она составляет минуты, для других — многие сутки. Продолжительность жизни белков и скорость их кругооборота определяются как скоростью их биосинтеза, так и скоростью протеолиза. Скорость П. белков зависит от ряда факторов, в частности от их взаимодействия с другими веществами: субстратами, коферментами, аллостерическими эффекторами (см. Ферменты), а также от химических модификаций, которым белок может подвергаться в клетке (гликозилирования, фосфорилирования и др.).

При переходе организма из одного физиологического состояния в другое (например, на определенных стадиях эмбриогенеза), а также при голодании и некоторых стрессорных реакциях наблюдается резкое усиление П. тканевых белков. Локальное усиление П. белков межклеточного матрикса (коллагена, фибронектина, ламинина, протеогликанов и др.) отмечается, например, в процессе разрушения хряща при ревматоидном артрите, базальной мембраны при гломерулонефрите, а также при инвазивном росте и метастазировании опухолей. Повышенный П. этих белков, а также эластина наблюдается в случае разрушения легочной ткани при эмфиземе легкого, туберкулезе легких и др. Рассеянный склероз и ряд других заболеваний нервной системы, сопровождающихся демиелинизацией, связаны с усилением П. основного белка миелина. При мышечной дистрофии отмечают повышенный П. белков миофибрилл. Во всех этих случаях усиленный распад белков обусловлен освобождением внутриклеточных протеаз и нарушением регуляции их активности.

Изменение П. белков при ряде других заболеваний может быть вызвано синтезом дефектного белка-субстрата. Это наблюдается при некоторых наследственных энзимопатиях, когда недостаточность фермента может быть о словлена синтезом белка-субстрата, обладающего повышенной чувствительностью к действию протеаз (например, β-галактозидазы при некоторых формах галактосиалидоза), или нарушением ограниченного П. биосинтетического предшественника ферментного белка и образованием вследствие этого аномальной формы фермента (например, аномальный α-субъединицы гексозаминидазы А при некоторых вариантах болезни Тея — Сакса).

Катализирующие гидролиз белков пептидгидролазы (протеазы, пептидазы) представляют собой большую группу ферментов, различающихся по своим физико-химическим свойствам, структуре и субстратной специфичности. Эти ферменты имеют универсальное распространение и локализованы в различных субклеточных структурах: ядрах, лизосомах, митохондриях, пластинчатом комплексе, микросомной и плазматической мембранах, цитозоле и др. Различают две большие группы протеаз: эндопептидазы, расщепляющие в белках внутренние и пептидные связи, и экзопептидазы, которые гидрализуют связи на N- и С-концевых участках пептидной цепи. По строению активного центра фермента и механизму его действия выделяют 4 семейства эндопептидаз: аспартильные, серниновые, цистеиновые и металлопротеазы, к аспартильным протеазам относятся пепсин, ренин, катепсины D, Е и ряд других; к сериновым ферментам принадлежат трипсин, химотрипсин, эластаза, подавляющее большинство протеаз плазмы крови (факторы свертывания крови, фибринолиза, системы комплемента, кининовой системы), многие внутриклеточные и бактериальные протеазы. К цистеиновым протеазам относятся многие катепсины: В, H, L, ряд бактериальных и растительных ферментов, из которых наиболее хорошо изучен папаин. Представителями металлопротеаз являются коллагеназа, термолизин и др. Экзопептид разделяют на аминопептидазы и карбоксипептидазы, дипептидиламинопептидазы и дипептидилкарбоксипептидазы, которые катализируют отщепление аминокислот или дипептидов от N- и С-конца пептидной цепи соответственно, и дипептидазы, катализирующие гидролиз дипептидов. Многие экзопептидазы являются металлоферментами.

Большинство протеаз синтезируется в виде неактивных предшественников — проферментов; их активация происходит в результате ограниченного П., протекающего либо аутокаталитически, либо под действием определенных протеаз. Многие протеазы подвергаются аутолизу (самоперевариванию), при этом часто теряют ферментативную активность. В некоторых случаях (например, у Са 2+ -зависимых нейтральных протеаз) на определенных этапах аутолиза отмечают активацию ферментов. В плазме крови и других биологических жидкостях также в различных клетках и тканях присутствуют белковые ингибиторы, специфически блокирующие активность отдельных протеаз или групп протеаз. С помощью систем таких ингибиторов осуществляются регуляция активности протеаз в физиологических условиях и предохранение белков от их действия. Нарушение баланса между протеазами и соответствующими ингибиторами часто приводит к развитию патологии.

Для коррекции П. в клинической практике в качестве лекарственных средств используют протеолитические ферменты и их ингибиторы. Так, для нормализации П. пищевых белков при некоторых желудочно-кишечных заболеваниях применяют препараты пепсина, трипсина, химотрипсина для лизиса сгустков фибрина при тромболитической терапии используют плазмин (фибринолизин), стрептокиназу и др.; при лечении гнойных ран, ожогов, пролежней для П. белков некротизированных тканей применяют трипсин, химотрипсин и некоторые другие протеазы. При заболеваниях, сопровождающихся усиленным П. белков (например, при панкреатитах) используют препараты ингибиторов протеаз: трасилол и др.).

Библиогр.: Веремеенко К.Н., Голобородько О.П. и Кизим А.И. Протеолиз в норме и при патологии, Киев, 1988, библиогр.; Мосолов В.В. Протеолитические ферменты, М., 1971, библиогр.; Сыновец А.С. и Левицкий А.П. Ингибиторы протеолитических ферментов в медицине, Киев, 1985, библиогр.; Хорет А. Молекулярные основы патогенеза болезней, пер. с польск., М., 1982.

II

Протеолиз (Протеины + греч. lysis растворение, разрушение)

процесс ферментативного расщепления белков до пептидов и аминокислот.

Некоторые аспекты патогенеза и терапии пищевой аллергии у детей

С.В.Зайцева
Московский государственный медико-стоматологический университет им. А.И.Евдокимова

В статье представлен обзор литературных данных о влиянии микрофлоры на иммунную систему кишечника и процесс формирование пищевой толерантности. Подчеркнута роль пробиотиков в профилактике и лечении пищевой аллергии.
Ключевые слова: пищевая аллергия, пищевая толерантность, пробиотики, дети.

Some Aspects Of Pathogenesis And Treatment Of Food Allergies In Children

S.V.Zaytseva
Moscow State University of Medicine and Dentistry of F.I.Evdokimova, Department of Paediatrics

The review of literary data on questions influence of microflora on immune system of intestines and process formation of food tolerance is presented in article. The role of probiotics is defined in prevention and treatment of food allergy.
Key words: food allergy, food tolerance, probiotics, children.

Тенденцией последнего столетия стало увеличение аллергических заболеваний. Особенно актуальна данная проблема в педиатрической практике. Именно в детском возрасте формируется сенсибилизация организма к различным аллергенам и первичную роль в этом играет пищевая гиперчувствительность. Атопический дерматит, ангионевротические отеки, крапивница, гастроинтестинальные симптомы пищевой аллергии все чаще встречаются у детей, начиная с грудного возраста.

Извращенные реакции на пищу, в том числе пищевая аллергия известны со времен античности. Однако на протяжении многих столетий претерпели изменения вопросы, касающиеся терминологии, этиологии, патогенеза и терапии данного заболевания.

Согласно современным представлениям, все побочные реакции на пищевые продукты определяют термином пищевая гиперчувствительность (непереносимость). Она в свою очередь подразделяется на пищевую аллергию и неаллергические реакции на пищу. В основе пищевой аллергии лежат иммунные механизмы реагирования на пищевые продукты. В то время как пищевая гиперчувствительность неаллергического типа протекает без участия иммунной системы. Она может быть вызвана патологией желудочно-кишечного тракта, ферментопатиями, псевдоаллергическими реакциям после употребления продуктов, богатых гистамином, тирамином, гистаминолибераторами, а также многими другими факторами.

Распространенность пищевой аллергии у детей варьирует, по данным разных авторов, от 0,5 до 30% в различные возрастные периоды [1, 2]. Согласно национальной программе по питанию детей (2011) наибольшая встречаемость пищевой аллергии отмечается в возрасте до 2-х лет и составляет 6-8% [3].

Данные отечественных исследователей указывают, что у детей первого года жизни наиболее часто выявляется гиперчувствительность к белкам коровьего молока (85%), куриного яйца (62%), глютену (53%), белкам банана (51%), риса (50%). Реже встречается сенсибилизация к белкам гречи (27%), картофеля (26%), сои (26%), еще реже к белкам кукурузы (12%), различных видов мяса (0-3%)[4].

В клинической практике наиболее часто встает вопрос о роли молочных продуктов в развитии аллергии у детей раннего возраста. По мнению большинства педиатров, на первом году жизни именно белки молока ответственны за развитие кожных проявлений аллергии, что нередко ведет к необоснованному исключению этого необходимого продукта из рациона ребенка. Однако распространенность к белкам молока выявляется всего лишь у 2-6% детей первых лет жизни. Проспективные исследования показали, что 85% детей первых двух лет жизни с аллергией к белкам коровьего молока приобретают к ним толерантность к 3-летнему возрасту, а у 80% детей с аллергией к яйцу толерантность формируется к 5 годам [5].

Увеличение распространенности, тяжесть клинических проявлений пищевой аллергии, возможность формирования оральной толерантности к пищевым продуктам стимулировали исследования по изучению вопросов патогенеза заболевания и поиск механизмов предупреждения пищевой аллергии у детей.

Неоспоримым является факт, что в основе аллергических заболеваний лежит генетическая предрасположенность. Однако только изменением генотипа нельзя объяснить возрастающую роль аллергических заболеваний в мире. Как показывает анализ литературных данных, влияния окружающей среды нередко определяет возможность реализации наследственной информации. Именно поэтому поиску факторов, способствующих активации или супрессии пищевой аллергии посвящено немало работ.

Следствием поиска решений данной проблемы стало появление нескольких гипотез, объясняющих высокий уровень аллергии. Так, в 1989 г. английский врач D.P.Strachan опубликовал данные, которые в последующем нашли отражение в развитии «гигиенической концепции» аллергии [6]. Так, в 1989 г. английский врач D.P.Strachan опубликовал данные, которые в последующем нашли отражение в развитии «гигиенической концепции» аллергии. [6]. В соответствии с его наблюдениями, перенесенные в первые два года жизни ребенком инфекционные заболевания могут оказывать протективный (защитный) эффект по отношению к респираторной аллергии. Его анализ жизни более чем 17 тыс. пациентов показал, что чем меньше ребенок имеет контакт с инфекционным фактором, тем выше риск развития аллергических заболеваний.

Данная теория нашла немало экспериментальных подтверждений в последующие годы. Так исследовательской группой ALEX (akkergies and endotoxin) из Швейцарии, Мюнхена и Зальцбурга было показано, что дети, родившиеся и выросшие на фермах, где родители занимались сельским хозяйством, в 3 раза реже имели сенсибилизацию к пыльцевым аллергенам и клинику поллиноза, чем дети, не имеющие контакта с крестьянским хозяйством [7].

На современном уровне иммунологическая основа гигиенической теории объясняется дисбалансом субпопуляций T-хелперов (Th): Th1-профиля и Th2-профиля лимфоцитов. Любой иммунный ответ развивается в направлении либо Th1-, либо Th2-типа и во многом определяет характер заболеваний. Обе эти субпопуляции различаются по набору синтезируемых ими цитокинов. У человека Th1-клетки, как правило, продуцируют интерферон-γ, фактор некроза опухоли-β и интерлейкин-2 (ИЛ-2) и участвуют в опосредованных клетками воспалительных реакциях. Некоторые из цитокинов, выделяемые Th1, обладают провоспалительной активностью, а также стимулируют цитотоксические клетки и T-эффекторы гиперчувствительности замедленного типа.

В противоположность Th1-клеткам клетки Th2 синтезируют ИЛ-4, ИЛ-5 , ИЛ-6, ИЛ-9, ИЛ-10 и ИЛ-13. Эти цитокины усиливают образование антител, особенно класса IgE, а также активируют хемотаксис эозинофилов в очаг воспаления. В этом случае более вероятно развитие аллергических реакций. Помимо этого, цитокины Th1-профиля, подавляют активность Th2, и наоборот.

В норме внутриутробно дифференцировка лимфоцитов хелперов смещена в сторону Th2-профиля, что обеспечивает благоприятное течение беременности. В постнатальном периоде под активным воздействием микробного фактора происходит переключение Th2 профиля иммунной системы на Th1 профиль, что в свою очередь предупреждает развитие атопии у детей. Причины, блокирующие данный процесс в настоящее время окончательно неизвестны. Однако существуют работы, свидетельствующие, что этому может способствовать снижение микробной стимуляции иммунной системы, которое является следствием бесконтрольного применения антибиотиков, повышения уровня социальногигиенических мероприятий, изменения диетических традиций и уменьшения количества членов семьи [8].

С учетом вышесказанного становится понятным, что определение факторов, стимулирующих дифференцировку нулевых Th в направлении Th1, является перспективным направлением в профилактике и лечении аллергических заболеваний. В этом плане интересны работы, посвященные изучению врожденного иммунитета. Так, определение роли антиген-презентирующих клеток, Toll-рецепторов, Т-регуляторных (Treg) лимфоцитов и поддержании иммунного баланса между Th1 и Th2-клетками является большим достижением последнего десятилетия.

С описания в 1997 году в лаборатории К.Дженувея Toll-подобного рецептора (Toll-lake receptor) на моноцитах человека началась эра изучения роли врожденной иммунной системы (innate immune system) в иммунологическом ответе организма. В настоящее время установлено, что первая линия защиты от инфекции создается не только с помощью барьерной функции кожи и слизистых врожденного иммунитета. Большое значение в этой защите играют дендритные клетки, которые первые распознают патогенные антигены с помощью так называемых образ-распознающих рецепторов (PRR — pattern recognition receptors) расположенных на поверхности клетки. Активизация этих рецепторов приводит к инициации (или нивелировке) продукции каскада цитокинов, что, в свою очередь, влечет за собой активизацию или ослабление адаптивного иммунного ответа. Эти рецепторы обладают специфичностью реагирования в зависимости от антигена и играют важную роль в последующей стимуляции Treg. Именно Treg лимфоциты секретируют цитокины, которые поддерживают баланс в системе Th1/Th2-иммунного ответа.

Таким образом, стимуляция врожденной иммунной системы организма определяет последующее направление ответа адаптивной иммунной системы. При этом считается, что воспалительная реакция врожденной иммунной системы, особенно секреция ИЛ-12 дендритными клетками, является важным регулятором защитных Th1-реакции приобретенной иммунной системы в отношении развития аллергии.

Согласно литературным данным, в последнее десятилетие активно обсуждается роль естественной микробной флоры кишечника на врожденный иммунный ответ и стимуляцию постнатального Th1 иммунного ответа в первые месяцы жизни ребенка [9, 10].

В этом плане интересна еще одна гипотеза двойственного воздействия аллергенов. Эта гипотеза Dennis Ownby свидетельствует о том, что раннее воздействие аллергена на организм способствует формированию иммунологической толерантности. В то же время формирование пищевой толерантности является одним из важных моментов предупреждения пищевой аллергии.

Пищевая толерантность — это специфическая активная иммунологическая ареактивность к антигену, с которым организм ранее контактировал при оральном пути введения. Формирование имунологической толерантности связано с участием трех ключевых и одновременно взаимосвязанных компонентов кишечника: лимфоидной ткани, ассоциированной со слизистой оболочкой кишечника, факторами межклеточного взаимодействия (цитокинами) и бактериями-комменсалами.

Лимфоидная ткань, ассоциированная со слизистыми оболочками, по объему превосходит все остальные виды лимфоидных тканей, сосредоточенных в центральных и периферических отделах иммунной системы. Так, в ЖКТ сосредоточено до 80% всей лимфоидной ткани человека, что, вероятно, обусловлено постоянными контактами пищеварительной системы с разнообразными антигенами. Определено, что эпителиальные клетки, входящие в состав слизистой желудочно-кишечного тракта, наряду с Lamina propria, выполняют функцию не только механической защиты, но и являются активными участниками иммунного ответа. Клетки эпителия слизистых оболочек наряду с макрофагами, нейтрофилами, дендритными клетками являются антиген-представляющими. В них также представлены PRR рецепторы, распознающие патогенные антигенны. Вместе с этим в клетках эпителия происходит формирование секреторного компонента для иммуноглобулина А.

В последние десятилетия установлено, что в собственной пластинке слизистой оболочки также есть Т-лимфоциты-хелперы. Надо отметить, что на слизистых желудочно-кишечного тракта наряду с Т-хелперами 1 и 2-го порядка находятся и регуляторные Т-хелперы, которые принимают активное участие в формировании иммунологической толерантности. Этот процесс обеспечивается в основном за счет продукции противовоспалительных цитокинов -интерлейкина 10 (ИЛ-10) и трансформирующего фактора роста β (TGF-β), которые оказывают в числе прочих эффектов регуляторное влияние на иммунный ответ. Подтверждением этого могут быть данные последних лет доказывающие, что грудное молоко содержит IL-10 и TGF-β-цитокины, которые снижают риск развития аллергии и способствуют формированию у ребенка пищевой толерантности. Чем выше уровень TGF-β в молозиве матерей, тем реже у детей впоследствии развиваются атопические заболевания. Защитный эффект грудного молока в отношении развития аллергии был продемонстрирован в нескольких клинических исследованиях. Так, в работе Kull при обследовании более 4 тыс. детей было установлено, что продолжительное грудное вскармливание снижало риск развития не только пищевой, но и респираторной аллергии [11].

В последние годы уделяется особое внимание иммуномодулирующей активности естественной микрофлоры кишечника на формирование оральной толерантности. Установлено, что микрофлора, взаимодействуя со PRR рецепторами антиген-представляющих клеток, обеспечивает баланс провоспалительных и антивоспалительных цитокинов на слизистых оболочках. Особое место отводится бактериям -комменсалам, которые колонизируют кишечник. Изменение в первоначальной колонизации кишечника, может неблагоприятно отразиться на последующем развитии аллергии. Подтверждением тому является частое развитие аллергии у детей, рожденных при операции кесарева сечения. Таким образом, сохранение естественной микрофлоры кишечника может быть немаловажным фактором в профилактике аллергии.

Согласно данным исследователей, микрофлора кишечника ребенка претерпевает существенные изменения на протяжении первых месяцев и лет жизни. В течение первой недели после рождения флора желудочно-кишечного тракта представлена стрептококками, клостридиями, нейссериями, стафилококками и к концу первой недели жизни в ЖКТ доминируют бифидобактерии. У детей раннего возраста преобладают следующие разновидности бифидобактерий: B.bifidum, B.breve, B.infantis, B.parvolorum, B.lactis. У детей на искусственном вскармливании превалирует B.longum. К 6 мес появляются B.catenulatum, B.pseudocatenulatum, B.adolescentis. У взрослых чаще выявляются B.bifidum, B.adolescentis, B.longum. Бифидобактерии оказывают иммуномодулирующее действие на систему местного иммунитета кишечника. Так, в эксперименте установлено, что B.breve проявляет адъювантную активность и повышает продукцию антиген специфических иммуноглобулинов А [12,13,14].

Интересно исследование на так называемых «безмикробных» мышах. Установлено, что безмикробные животные частично или полностью неспособны к развитию оральной иммунологической толерантности. Это обусловлено тем, что бифидо- и лактобактерии способны оказывать влияние на продукцию цитокинов. Например, B.infantis оказывает ингибирующее действие на продукцию спленоцитами мыши ИЛ-17 — одного из основных провоспалительных цитокинов, а бифидобактерии, встречающиеся в раннем детском возрасте, в значительно меньшей степени способны к стимуляции продукции провоспалительных цитокинов макрофагами мыши, чем бифидобактерии, характерные для взрослых [15]. В этом же исследовании было показано, что бифидобактерии, характерные для раннего детского возраста, стимулируют синтез макрофагами ИЛ-10, тогда как бифидобактерии, доминирующие в более старшем возрасте (B.adolescentis), не влияют на синтез этого цитокина макрофагами.

Установлено, что изменения микрофлоры кишечника могут предшествовать появлению клинических симптомов аллергии. Многочисленными исследованиями показано, что эти изменения характеризуются в основном снижением количества бифидобактерий и увеличением уровня клостридий и бактероидов. Вероятно, бифидобактерии, достигая определенного количественного уровня, оказывают регуляторное действие на параметры иммунитета слизистых оболочек. При снижении их уровня бифидобактерий вследствие различных причин, регуляторные процессы нарушаются, что в определенных случаях приводит к дисбалансу дифференцировки Т-лимфоцитов в сторону увеличения доли Т-хелперов 2 типа (Th2-лимфоцитов) и развитию аллергического воспаления [16].

Наряду с бифидобактериями у детей раннего возраста в кишечнике присутствуют лактобактерии -аэротолерантные грамположительные неспорообразующие палочки. В период новорожденности их количество может варьировать. В раннем периоде жизни у детей встречаются преимущественно лактобактерии — L.gasseri, L.salivarius, в старшем возрасте появляются L.rhamnosus, L.casei, L.reuteri и др. С возрастом число видов лактобактерий увеличивается, численность бифидобактерий постепенно уменьшается, а численность кишечной палочки остается стабильным. Согласно современным исследованиям некоторые виды, например L.casei Shirota способны активировать клеточный иммунитет и подавлять продукцию IgE. В то же время выявлено различное влияние лактобактерий на дендритные клетки кишечника с последующей регуляцией иммунного ответа. При изучении влияния лактобактерий на продукцию дендритными клетками провоспалительного цитокина ИЛ-12 показано, что L.casei в наибольшей, а L.reuteri — в наименьшей степени способны к стимуляции ИЛ-12 [17]. Инкубация клеток кишечного эпителия с лакто- и бифидобактериями, характерными для раннего детского возраста, снижает продукцию провоспалительного цитокина ИЛ-8, индуцированного S.typhimurium [18].

В настоящее время установлено, что бифидо- и лактобактерии, характерные для раннего детского возраста, в меньшей степени способны к продукции провоспалительных цитокинов, чем бифидо- и лактобактерии, характерные для более старших возрастных групп. Вероятно, это обусловлено тем, что одной из важнейших функций нормальной микрофлоры детей раннего возраста является формирование механизмов иммунологической толерантности.

Таким образом, с современных позиций кишечный микробиоциноз является важнейшим фактором в становления иммунитета и формировании пищевой толерантности, что во многом определяет вероятность развития пищевой аллергии.

Учитывая роль микрофлоры в индукции пищевой толерантности, в настоящее время проводятся многочисленные исследования, направленные на возможности использования ее в целях предотвращения пищевой аллергии. В этом плане интересны перспективы использования препаратов и продуктов детского питания, содержащих пре- и пробиотики.

Пробиотики — это живые организмы и/или вещества микробного происхождения, оказывающие при естественном способе введения благоприятные эффекты на физиологические функции через оптимизацию его микробиологического статуса. Термин «пробиотики» впервые был введен в 1965 г. Лилли и Стиллуэллом в противоположность антибиотикам. Пробиотики были описаны как микробные факторы, стимулирующие рост других микроорганизмов. В 1989 г. Рой Фуллер подчеркнул необходимость жизнеспособности пробиотиков и выдвинул идею об их положительном влиянии на пациентов. В качестве пробиотиков чаще используются штаммы лакто- и бифидобактерий. Также в этой роли могут выступать дрожжевые Saccharomyces cerevisiae и некоторые штаммы кишечной палочки.

В настоящее время данными многочисленных исследований доказано, что эффективность пробиотиков состоит не в нормализации микрофлоры организма. Пробиотики не становятся членами нормальной микрофлоры организма. Они исчезают через 48-72 ч после их приема, так как к ним не образуется толерантность. Влияние пробиотиков на организм заключается в том, что они оказывают иммуномодулирующее действие на эпителиальные и дендритные клетки субэпителиального слоя , где они активируют образраспознающие рецепторы, которые продуцируя цитокины способствуют повышению количества и активации регуляторных Т-клеток разных типов. Именно это крайне важно для формирования пищевой толерантности в организме [10].

Данные литературы по эффективности пробиотиков в терапевтических целях при аллергии неоднозначны. В настоящее время установлено несколько путей, посредством которых пробиотики модулируют аллергическое воспаление. Среди них, например, воздействие протеаз на белки пищи. Так выявлено, что протеазы пробиотиков разрушают казеин коровьего молока, при этом изменяются иммуногенные свойства белка. Экспериментально установлено, что у детей, сенсибилизированных к коровьему молоку, Lactobacillus GG способна протеолитически воздействовать на казеин и ингибировать синтез IgE и активацию эозинофилов. [19, 20] Другой путь реализуется воздействием на цитокиновый профиль. Так, например, экспериментально выявлено, что после приема Lactobacillus rhamnosus GG (ATCC 53103) имеет место снижение секреции фактора некроза опухоли, повышающие синтез интерферона в кишечнике у больных, страдающих аллергией к коровьему молоку. Одновременно пробиотики могут уменьшать интестинальную проницаемость, предупреждая проникновение аллергенов [21].

Существует ряд клинических исследований, посвященных оценке профилактического и лечебного эффекта пробиотиков при атопических заболеваниях, проведенных в последние годы. Наиболее изучены в рандомизированных контролируемых исследованиях штаммы L. rhamnosus GG и B. lactis ВЬ-12. Метаанализы результатов свидетельствуют об эффективности пробиотического штамма L. rhamnosus GG и B. lactis ВЬ-12 в профилактике и лечении атопической экземы [22, 23].

Так, в двойном слепом плацебоконтролируемом исследовании проведено изучение 62 матерей и детей с высоким риском возникновения атопии. Было показано, что назначение пробиотиков L. rhamnosus GG и B. lactis ВЬ-12 женщинам во время беременности и кормления грудью значительно (на 68%) снижало риск возникновения у ребенка атопической экземы в течение первых 2 лет жизни по сравнению с плацебо (15 и 47%, соответственно; р=0,01). Интересным является тот факт, что наиболее выраженный эффект от применения пробиотиков матерями, отмечался у детей с повышенным уровнем IgE в пуповинной крови. При этом у матерей, получавших пробиотики во время беременности и лактации, отмечалось увеличение уровня противовоспалительного цитокина — трансформирующего фактора роста — 2 в молоке [24].

Благоприятный профиль безопасности этих лакто- и бифидобактерий позволяет широко рекомендовать данные пробиотические микроорганизмы практически у всех категорий пациентов.

Важно отметить, что применение пробиотиков при беременности и грудном вскармливании включено в «Рекомендации по ведению пациентов с атопическим дерматитом», разработанные Американской академией дерматологии, и имеет самый высокий уровень доказательности — I [25].

Классификации пробиотиков основываются на количестве микроорганизмов, входящих в препарат, их родовой принадлежности или наличии дополнительных компонентов в составе препарата. Пробиотики подразделяют на монокомпонентные (монопробиотики), однокомпонентные сорбированные, поликомпонентные (полипробиотики), комбинированные (синбиотики); по составу — на бифидосодержащие, лактосодержащие, колисодержащие и состоящие из споровых бактерий и сахаромицет (самоэлиминирующиеся антагонисты) [26].

Несмотря на довольно широкое использование, бактериальные препараты на основе живых микроорганизмов не всегда оказываются высокоэффективными. Это связано, с одной стороны, с быстрой элиминацией штаммов, вводимых в агрессивную среду желудочно-кишечного тракта, с другой — наличием доказательств, что при попадании в желудочно-кишечный тракт активизируется лишь 5% лиофилизированных бактерий, представляющих основу пробиотика.

Поэтому в настоящее время предпочтение отдается полипробиотикам. Их преимущество заключается в том, что различные штаммы с разнообразными отличительными особенностями имеют больше шансов на выживание и колонизацию. Их пробиотический эффект усилен за счет сочетания специфических свойств штаммов, а положительные взаимоотношения между штаммами повышает их биологическую активность [27].

В настоящее время в педиатрической практике активно используется препарат линекс, содержащий L.acidophilus, S.faecium B.infantis. Не менее интересен пробиотик Бифиформ Бэби. Это пробиотик, который разрешен к применению у детей с первых дней жизни содержит Bifidobacterium lactis BB-12 (1×10 9 КОЕ) и Streptococcus thermophilus TH-4 (1х10 8 КОЕ).

С конца 2010 г. в России впервые появились полипробиотики РиоФлора компании Никомед, разработанные на основе препаратов компании Winclove Bio Industries B.V. (Нидерланды). Winclove имеет более чем 20-летний опыт в разработке и производстве пробиотических препаратов. Winclove разрабатывает и создает полипробиотики в сотрудничестве с ведущими больницами университетов Европы. За эти годы были разработаны полипробиотики, показанные для применения при антибиотик-ассоциированной диарее, запоре, воспалительных заболеваниях кишечника, диарее путешественников, аллергии и вагинальных инфекциях. Сбалансированная комбинация пробиотических микроорганизмов (Bifidobacterium, Lactobacillus,Lactococcus lactis и Streptococcus thermophilus) способствует укреплению иммунитета. Баланс кишечной микрофлоры обеспечивает нормальное пищеварение, а также естественную защиту организма от инфекций и воздействия неблагоприятных факторов внешней среды.

Входящие в состав пробиотического комплекса бактерии нормализуют баланс микрофлоры кишечника, положительно влияют на иммунитет и способствуют формированию оральной толерантности. На нашем рынке предложено два препарата: «РиоФлора Иммуно» и «РиоФлора Баланс».

Комплексный препарат «РиоФлора Иммуно» содержит 9 штаммов пробиотических микроорганизмов: Bifidobacterium lactis NIZO 3680, Bifidobacterium lactis NIZO 3882, Lactobacillus acidophilus, Lactobacillus plantarum, Lactococcus lactis, Bifidobacterium longum, Lactobacillus paracasei, Lactobacillus salivarius, Streptococcus thermophiles.

Каждая капсула содержит не менее одного миллиарда (1,0×10 9 ) КОЕ/капс. пробиотических микроорганизмов.

Комплексный препарат «РиоФлора Баланс» содержит 8 штаммов пробиотических микроорганизмов: Bifidobacterium lactis, Lactobacillus plantarum, Bifidobacterium bifidum, Lactobacillus acidophilus W37, Lactobacillus acidophilus W55, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus salivarius. Каждая капсула содержит не менее двух с половиной миллиардов (2,5×10 9 ) КОЕ/капс. пробиотических микроорганизмов.

Эти препараты рекомендуются в качестве биологически активной добавки к пище, как источник пробиотических микроорганизмов (бифидо- и лактобактерий). Рекомендуется прием капсул взрослым и детям старше 3-х лет желательно натощак (утром или перед сном). Возможно растворение содержимого капсулы в теплой воде, (при невозможности проглотить целую капсулу).

Таким образом, экспериментальные и клинические исследования подтверждают роль естественной микрофлоры в формировании пищевой толерантности, а также в профилактике и лечении атопических заболеваний у детей. Большой клинический интерес представляют работы по изучению эффективности пробиотиков в профилактических и терапевтических схемах. В тоже время эти данные требуют проведения дальнейших изысканий, которые позволили бы определить оптимальные штаммы микроорганизмов в различные возрастные периоды, дозы, режимы назначения и показания к использованию пробиотиков в лечении пищевой аллергии.

Аллергия

Патологическая физиология [Учебник для студентов мед. вузов]
Н. Н. Зайко, Ю. В. Быць, А. В. Атаман и др. К.: «Логос», 1996

Аллергия (от греч, alios — иной, ergon — действую) — качественно измененная реакция организма на действие веществ антигенной природы, которая приводит к разнообразным нарушениям в организме — воспалению, спазму бронхиальной мышцы, некрозу, шоку и другим изменениям. Следовательно, аллергия — это комплекс нарушений, возникающих в организме при гуморальных и клеточных иммунных реакциях.

Этиология. Причиной аллергии могут быть самые различные вещества с антигенными свойствами (аллергены), которые вызывают в организме иммунный ответ гуморального или клеточного типа.

Аллергены разделяют на экзо- и эндогенные (рис. 7.1). Аллергенами могут быть полные антигены и неполные — гаптены. Неполные антигены вызывают аллергию несколькими путями:
1) соединяясь с макромолекулами организма, индуцируют выработку антител, специфичность которых направлена против гаптена, а не претив его носителя;
2) формируя антигенные комплексы с молекулами организма. При этом образовавшиеся антитела реагируют только с комплексом, а не с его компонентами.

Аллергия может развиваться при воздействии на организм физических факторов и веществ, которые не являются антигенами, а только факторами, вызывающими появление антигенов. В данном случае физические факторы (тепло, холод, радиация) и химические вещества индуцируют в организме образование аллергенов из молекул организма путем демаскирования скрытых антигенных детерминант или образования новых антигенных детерминант в результате денатурации молекул. С выработанными антителами демаскирующий или денатурирующий агент не реагирует.

Патогенез.Разнообразные по клиническим проявлениям аллергические реакции имеют общие патогенетические механизмы. Различают три стадии аллергических реакций: иммунную, биохимическую (патохимическую) и патофизиологическую, или стадию функциональных и структурных нарушений.

Иммунная стадия аллергических реакций. Иммунная стадия начинается при первой встрече организма с аллергеном и заканчивается взаимодействием антитела с антигеном. В этот период происходит сенсибилизация организма, т. е. повышение чувствительности и приобретение способности реагировать на повторное введение антигена аллергической реакцией. Первое введение аллергена называется сенсибилизирующим, повторное же, которое непосредственно вызывает проявление аллергии, разрешающим.

Сенсибилизация бывает активной и пассивной. Активная сенсибилизацияразвивается при иммунизации антигеном, когда в ответ включается собственная иммунная система. Механизмы активной сенсибилизации следующие:

1. Распознавание антигена, кооперация макрофагов с Т- и В-лимфоцитами, выработка плазматическими клетками гуморальных антител (иммуноглобулинов) или образование сенсибилизированных лимфоцитов (Т-эффекторов) и размножение лимфоцитов всех популяций.

2. Распределение антител (IgE, IgG) в организме и фиксация их на клетках-мишенях, которые сами антител не вырабатывают, в частности, на тканевых базофилах (тучных клетках), базофильных гранулоцитах, моноцитах, эозинофилах, а также на тромбоцитах, или взаимодействие иммуноглобулинов (IgG, IgM, IgA) либо Т-эффекторов с антигенами, если к моменту развития сенсибилизации они еще присутствуют в организме.

На 7 — 14-й день после введения аллергена в сенсибилизирующей дозе организм приобретает к нему повышенную чувствительность.

Пассивная сенсибилизация осуществляется в неиммунизированном организме при введении ему сыворотки крови, содержащей антитела, или клеточной взвеси с сенсибилизированными лимфоцитами, полученными от активно сенсибилизированного данным антигеном донора. При этом состояние повышенной чувствительности развивается через 18 — 24 ч. Это время необходимо для распределения антител в организме и фиксации их на клетках.

На характер аллергической реакции влияют следующие особенности иммуноглобулинов (рис. 7.2).

1. Способность связывать комплемент, которая максимально выражена у IgM и умеренно у IgG.

2. Способность проникать в ткани, ограниченная у крупномолекулярных IgM, умеренно выраженная у IgG и сильно выраженная у IgE и IgD.

3. Способность сорбироваться на клетках тканей, сильно выраженная у IgE и свойственная некоторым субклассам IgG.

4. Способность преципитировать — наиболее выраженная у IgM и IgG. IgE обычно представляют собою непреципитирующие антитела. Однако реакция преципитации, агглютинации и флоккуляции зависят не только от класса иммуноглобулинов, но и от свойств антигена. Поэтому с некоторыми антигенами даже IgA могут давать реакцию преципитации.

5. Проникновение в секреты и слизь. Основным секреторным типом антител являются IgA. Однако в секреты и слизь могут транспортироваться также и IgG и даже IgM.

6. Способность проникать через плаценту, которая играет важную роль, с одной стороны, в индукции иммунитета у плода, а с другой — в возникновении иммунного конфликта между матерью и плодом и развитии аллергии у плода и новорожденного. Такой способностью у человека обладают преимущественно IgG.

Кумбс и Джелл (1968) выделили следующие типы аллергических реакций:

Тип I — реагиновый (анафилактический). Антитела сорбированы на клетке, а антигены поступают извне. Комплексы антиген—антитело образуются на клетках, несущих антитела. В патогенезе реакций существенным является взаимодействие антигена с IgE и IgG, (реагинами), сорбированными на тканевых базофилах, и последующая дегрануляция этих клеток (рис. 7.3). Система комплемента при этом не активируется.

К этому типу реакций относят анафилаксию общую и местную. Общая анафилаксия бывает при анафилактическом шоке. Местная анафилаксия подразделяется на. анафилаксию в коже (крапивница, феномен Овери) и анафилаксию в других органах (бронхиальная астма, сенная лихорадка).

Тип II — реакции цитолиза, или цитотоксические реакции. Антиген является компонентом клетки или сорбирован на ней, а антитело поступает в ткани. Аллергическая реакция начинается в результате прямого повреждающего действия антител на клетки; активации комплемента; активации субпопуляции В-киллеров; активации фагоцитоза. Активирующим фактором является комплекс антиген—антитело. К цитотоксическим аллергическим реакциям относится действие больших доз антиретикулярной цитотоксической сыворотки Богомольца (АЦС).

Тип III — реакции типа феномена Артюса или иммунных комплексов. Ни антиген, ни антитело при этом не являются компонентами клеток, и образование комплекса антиген—антитело происходит в крови и межклеточной жидкости. Роль преципитирующих антител выполняют IgM и IgG. Микропреципитаты сосредоточиваются вокруг сосудов и в сосудистой стенке. Это приводит к нарушению микроциркуляции и вторичному поражению ткани, вплоть до некроза. IgM, IgG — IgG, активируют комплемент, а посредством него — выработку других активных веществ, хемотаксис и фагоцитоз. Образуется лейкоцитарный инфильтрат — замедленный компонент феномена Артюса.

Тип IV — реакции замедленной гиперчувствительности (ГЗТ). Главная особенность реакций замедленного типа состоит в том, что с антигеном взаимодействуют Т-лимфоциты. Реакция замедленной гиперчувствительности не менее специфична по отношению к антигену, чем реакция с иммуноглобулинами, благодаря наличию у Т-лимфоцитов рецепторов, способных специфически взаимодействовать с антигеном. Этими рецепторами являются, вероятно, IgM, укороченные и встроенные в мембрану Т-лимфоцита, и антигены гистосовместимости (см. ниже). Однако в ткани, где происходит эта реакция, среди множества клеток, разрушающих антиген и ткань, обнаруживается только несколько процентов Т-лимфоцитов, способных специфически реагировать с антигеном. Данный факт стал понятен после открытия лимфокинов — особых веществ, выделяемых Т-лимфоцитами. Благодаря им иммунные Т-лимфоциты даже в небольшом количестве становятся организаторами разрушения антигена другими лейкоцитами крови (см. ниже).

Тип V — стимулирующие аллергические реакции. В результате действия антител на клетки, несущие антиген, происходит стимуляция функции этих клеток. Механизм стимуляции объясняется тем, что выработанные антитела могут специфически реагировать с рецепторами клетки, предназначенными для активирующих гормонов или медиаторов. К стимулирующему типу аллергических реакций относится аутоиммунный механизм базедовой болезни, приводящий к гиперфункции щитовидной железы.

В зависимости от времени появления реакции после контакта с аллергеном различают также аллергические реакции немедленного типа (гиперчувствительность немедленного типа — ГНТ) и аллергические реакции замедленного типа (гиперчувствительность замедленного типа — ГЗТ) по классификации, предложенной R. A. Cooke (1930). В первом случае реакция развивается в течение 15 — 20 мин, во втором — через 1 — 2 сут. Эта классификация существует и в настоящее время, однако она не отображает всего многообразия проявлений аллергий в том числе патогенетических особенностей, лежащих в основе классификации Джелла и Кумбса.

Особенности иммунной стадии реакций замедленного (клеточного) типа. Т-лимфоциты распознают антигенные детерминанты с высокой степенью специфичности с помощью рецепторов, в состав которых входит антиген главного комплекса гистосовместимости МНС (от англ. major Histocompatibility complex).

Гены, кодирующие антигены МНС, располагаются у человека в 6-й хромосоме, имеется их 4 аллеля, каждый из генов встречается в генофонде во множестве (десятки) вариантов. Антигены МНС являются веществами, встроенными в мембраны клеток, в том числе, в мембраны лейкоцитов, поэтому их обозначают НLA-A, HLA-B, HLA-C, HLA-D (от англ. Human Leucocytes Antigen — антиген лейкоцитов человека).

По участию в иммунных реакциях лимфоцитов вещества главного комплекса гистосовместимости МНС разделили на две группы: к группе HI относятся HLA-A, HLA-B, HLA-C, группа НII включает HLA-D. В состав рецепторов Т-киллеров входят вещества группы HI. В том же организме рецепторы Т-хелперов содержат вещества из группы НИ (аллель HLA-D). Установлено, что клетки организма встраивают чужеродные антигены в свою мембрану в вещество комплекса МНС, например, антигены вируса при заражении клетки. Т-лимфоцит может распознать чужеродный антиген, если это чужеродное вещество в клетке-носителе встроено в такой же антиген главного комплекса гистосовместимости, каким располагает сам Т-лимфоцит, т. е. происходит ассоциированное иммунное распознавание.

Патохимическая стадия аллергических реакций I — III типа. Сущность биохимической стадии заключается в образовании или активации биологически активных веществ (БАВ), которое начинается уже с момента соединения антигена с антителом (рис. 7.4). При этом происходят следующие процессы.

1. Активация системы комплемента (кроме I типа). Активный комплемент обладает ферментной активностью, способностью разрушать мембраны микроорганизмов и тканевых клеток (см. выше), вызывая при этом освобождение новых БАВ, способностью активировать фагоцитоз, протеолитические ферменты крови, фактор Хагемана, дегрануляцию тканевых базофилов.

Часть фракций комплемента СЗа и С5а не включаются в общий комплекс, а действуют как самостоятельные биологически активные вещества, которые вызывают: дегрануляцию базофилов крови и тканевых базофилов; у нейтрофилов — хемотаксис, адгезию к эндотелиоцитам сосудов, образование и освобождение лейкотриенов; у макрофагов — хемотаксис, секрецию гликолитических и протеолитических ферментов, продукцию интерлейкина 1; у лимфоцитов — различное селективное действие на разные субпопуляции лимфоцитов, модулируют рециркуляцию, пролиферацию и дифференцировку лимфоцитов, обработку лимфоцитами антигенов. Компоненты СЗа и С5а являются анафилотоксином, существование которого как медиатора анафилаксии предполагали ранее. СЗа и С5а вызывают увеличение проницаемости сосудов и сокращение гладкой мускулатуры.

2. Активация фактора Хагемана — XII фактора свертывания крови. Активированный фактор Хагемана в свою очередь активирует свертывающую систему крови, систему комплемента и протеолитические ферменты крови.

3. Активация протеолитических ферментов крови — трипсиногена, профибринолизина, калликреиногена. Биологическая активность этих ферментов проявляется в расщеплении белков на полипептиды, во взаимоактивации друг друга, в активации фактора Хагемана, системы комплемента, тканевых базофилов, в способности повреждать клетки тканей, разрушать с помощью фибринолизина фибрин.

Калликреин, являясь ведущим звеном в кининовой системе крови, отщепляет от глобулина крови — кининогена — полипептиды, которые называются кининами. К ним относятся брадикинин — нонапептид (Н2 — Apr — Про — Про — Гли — Фе — Сер — Про — Фе — Apr — СООН) и каллидин — декапептид, который под действием трипсина превращается в брадикинин.

Брадикинин вызывает повышение проницаемости сосудов, снижение тонуса и их расширение, спазм неисчерченной мышечной ткани некоторых органов, является медиатором боли. Каллидин менее активен, чем брадикинин.

4. Выделение в ткань из окончаний чувствительных нервов полипептида Р, являющегося одним из самых сильных медиаторов воспаления.

Полипептид Р резко увеличивает проницаемость сосудов, активирует другие системы БАВ: вызывает дегрануляцию тканевых базофилов, активирует кининовую систему др.

5. Активация и освобождение протеолитических ферментов тканей — катепсинов и тканевой гиалуронидазы.

6. Дегрануляция тканевых базофилов, на которых сорбированы IgE, IgG 4, происходит при присоединении к иммуноглобулинам антигена. При этом выделяются две группы биологически активных веществ: 1) синтезируемые заранее (преформированные), связанные с гранулами — гистамин, гепарин, серотонин, фактор хемотаксиса эозинофилов, высокомолекулярный фактор хемотаксиса нейтрофилов, воспалительный фактор анафилаксии, различные ферменты (протеазы, кислые гидролазы и др.); 2) образуемые в процессе дегрануляции из компонентов мембраны — лейкотриены: С4 и D4 — медленно реагирующая субстанция МРС-А, лейкотриен В4, известный также как фактор хемотаксиса эозинофилов; простагландины, разнообразные по действию — активирующие и ингибирующие; фактор активации тромбоцитов (образующиеся при активации калликреин-кининовой системы — каллидин, брадикинин). Гистамин через рецепторы Н1 и серотонин, подобно брадикинину, повышают проницаемость сосудов, вызывают сокращение бронхиальной мышцы, кишок, матки; боль, зуд, жжение, шок и некроз, действуют на другие нервные рецепторы. В то же время действие гистамина на рецепторы типа Н2 вызывает противоположный эффект. Гепарин препятствует свертыванию крови, тормозит выработку антител, хемотаксис.

Медленно реагирующая субстанция А вызывает постепенное, но длительное сокращение бронхиальной мышцы, что имеет важное значение в патогенезе бронхиальной астмы. Освобождение гистамина и серотонина происходит при распаде тромбоцитов и базофильных гранулоцитов.

Липидные биологически активные вещества и перекисное окисление липидов. Известны 2 группы липидных БАВ, участвующих в аллергии:

1) производные фосфолипидов. К ним относятся производные 1-алкил-2-ацетилфосфатидилхолина, в частности фактор активации тромбоцитов;

2) продукты перекисного окисления производных арахидоновой кислоты — эйкозатетраеновой кислоты — эйкозаноиды. Перекисное окисление арахидоновой кислоты может идти двумя путями: липооксигеназным — под действием ферментов липооксигеназ образуются лейкотриены, сюда входят две группы: 1 — лейкотриены В; 2 — сульфолейкотриены, обозначаемые как лейкотриены С, D, Е. Сульфолейкотриены образуются при переносе цистеиновой сульфогруппы от глутатиона. Спазм бронхиол при бронхиальной астме вызывает медленно реагирующая субстанция А (МРС-А), которая является лейкотриеном D4. Второй путь окисления арахидоновой кислоты — циклооксигеназный — под действием ферментов циклооксигеназ образуются простагландины и тромбоксаны. Простагландины являются эндопероксидами, это ПГГ2, ПГН2, ПГФ2, ПГЕ2, ПГД2. Из тромбоксанов известен ТхА2.

Эйкозаноиды обладают разнообразным биологическим действием: ПГФ2 вызывает снижение тонуса сосудов, спазм неисчерченной мышечной ткани матки, бронхов, лизис тканевых базофилов и др. В то же время ПГ способствует накоплению цАМФ в клетках, тем самым вызывая расслабление бронхиальной мышцы снижение выделения из тканевых базофилов биологически активных веществ.

Фактор активации тромбоцитов (ФАТ) вызывает бронхоспазм и в то же время расширяет сосуды с падением артериального давления, снижает коронарный кровоток.

7. Накопление продуктов разрушения клеток крови и тканей.

8. Распад лейкоцитов и освобождение лизосомальных факторов (см. раздел XII — «Воспаление»); изменение активности холинэстеразы и увеличение освобождения ацетилхолина; изменение содержания электролитов. Наблюдается повышение концентрации ионов калия и кальция, что приводит к изменению возбудимости тканей.

Все системы БАВ связаны между собою прежде всего механизмами взаимоактивации, но имеются и тормозные пути. При развитии аллергических реакций могут приобретать особое значение отдельные системы БАВ:

1. заболевания, зависимые от тканевых базофилов: анафилаксия, бронхиальная астма, крапивница;

2. зависимые от комплемента: васкулиты, пневмониты;

3. реакции цитотоксического типа, при которых особое значение имеет прямое повреждающее действие антител с активацией комплемента: васкулиты, пурпура (мелкие кровоизлияния), аутоиммунная гемолитическая анемия и др.

Патохимическая стадия аллергических реакций замедленного типа. Реакция замедленной гиперчувствительности (IV тип) осуществляется при непосредственном контакте лимфоцита с антигеном. Если антиген является компонентом какой-нибудь клетки, то прикрепленные к этой клетке Т- или В-киллеры приводят к. гибели клетки-мишени. Киллер выделяет перфорин, который, подобно компонентам комплемента (см. рис. 6), встраивается в мембрану клетки или микроорганизма и полимеризуется, образуя в мембране сквозные каналы, что приводит к быстрой гибели клетки-мишени.

При контакте с антигеном Т-лимфоциты вырабатывают лимфокины, которые представляют собой биологически активнее вещества. С помощью лимфокинов Т-лимфоциты управляют функцией других лейкоцитов. Лимфокины бывают стимулирующие и тормозящие, в зависимости от того, на какие клетки они действуют, выделяют 5 групп лимфокинов.

1. Группа А — лимфокины, влияющие на макрофагоциты: фактор ингибирования миграции макрофагоцитов (МИФ); фактор агрегации макрофагоцитов (МАФ), хемотаксический фактор для макрофагоцитов (ХФ), фактор резистентности макрофагоцитов. Хф усиливает, а МИФ ингибирует миграцию макрофагоцитов в ткани, что приводит к накоплению их и очаге реакции.

2. Группа Б — лимфокины, влияющие на лимфоциты: фактор бласттрансформации, фактор помощи (фактор хелперов), фактор усиления, фактор супрессии, фактор переноса (Лоуренса) и др. фактор хелперов способствует вовлечению в иммунный ответ В- и Т-лимфоцитов других субпопуляций, фактор супрессии, наоборот, затормаживает или предупреждает иммунный ответ. Фактор бласттрансформации вызывает бласттрансформацию в других лимфоцитах, активируя при этом синтез нуклеиновых кислот. Особый интерес представляет фактор переноса (Лоуренса). Этот фактор выделяют из лимфоцитов сенсибилизированного антигеном организма. При введении его в несенсибилизированный организм появляются лимфоциты, способные специфически реагировать с антигеном. Фактор переноса (Лоуренса) может найти широкое применение при лечении иммунодефицитных заболеваний.

3. Группа В — лимфокины, влияющие на гранулоциты: хемотаксический фактор, факторы ингибиции. Хемотаксический фактор вызывает, а фактор ингибиции подавляет эмиграцию лейкоцитов, что, как и при МИФ, может способствовать накоплению лейкоцитов в очаге реакции.

4. Группа Г — лимфокины, влияющие на клеточные культуры: интерферон, ингибирующий синтез нуклеиновых кислот и защищающий клетку от вирусных инфекций; фактор, ингибирующий пролиферацию клеток культуры ткани и др.

5. Группа Д —лимфокины, действующие в целостном организме: фактор, вызывающий кожную реакцию и способствующий повышению проницаемости сосудов, развитию отека, выхождению лейкоцитов в Ткань. Под действием лимфокинов в месте расположения антигена на протяжении нескольких часов накапливаются лейкоциты — макрофагоциты, лимфоциты, гранулоциты, изменяется проницаемость сосудов и развивается воспалительный процесс. В иммунокомпетентной ткани (лимфатические узлы, селезенка и др.) наблюдается бласттрансформация, активация синтеза антител и образования Т-лимфоцитов. Из факторов, вырабатываемых лимфоцитами и другими лейкоцитами, выделяют группу интерлейкинов 1—6.

В организме существуют механизмы дезактивации биологически активных веществ и защиты органов-мишеней от их действия.

1. Остановка секреции БАВ: циклическая АМФ тормозит дегрануляцию тканевых базофилов; кортизон ингибирует активацию лизосом и образование лизосомальных ферментов.

2. Ингибирование БАВ: ингибирование всех протеолитических ферментов крови — трипсина, фибринолизина, калликреина; ингибирование комплемента. α2-Макроглобулин (α -М) — ингибитор протеолитических ферментов лизосом лейкоцитов и кининовой системы; α1-антитрипсин — ингибитор трипсина и хемотрипсина; антитромбин III и α2-антиплазмин ингибируют протеолитические ферменты крови, тормозя системы коагуляции, фибринолиза и комплемента. Гистамин через рецепторы Н2 тормозит активность Т-киллеров, секрецию лимфоцитами лимфокинов. Имеются ингибиторы продукции эйкозаноидов — липомодулин ингибирует фосфолипазу А , освобождающую арахидоновую кислоту из липидов мембран, ингибитором широкого спектра действия является гепарин.

3. Разрушение БАВ. Имеются системы разрушения всех БАВ. Эту функцию выполняют ферменты соответствующей специфичности: гистаминаза, карбоксипептидазы и протеазы, холинэстеразы; ферменты разрушения всех эйкозаноидов, например арилсульфатазы А и Б, разрушают по тиоэфирной связи лейкотриен Д, — медленно реагирующую субстанцию МРС-А; супероксиддисмутаза (внутриклеточный фермент), церулоплазмин (в крови и межклеточной жидкости) инактивируют супероксидный анион О2 • , являющийся опасным окислителем.

Особое место в системах ингибирования и разрушения БАВ занимают эозинофилы, выделяющие гистаминазу, арилсульфатазу (и другие системы инактивации эйкозаноидов), особый «большой белок эозинофилов», с помощью которого они инактивируют самые разнообразные вещества.

4. Защита клеток-мишеней от действия БАВ с помощью контррегуляторных гормонов-антагонистов БАВ (адреналина, кортизола) или путем изменения функционального состояния клеток (наркоз).

5. Дезактивация и предупреждение действия БАВ, образующихся в биохимической стадии аллергических реакций замедленного типа с помощью контррегуляторных субпопуляций хелперов и супрессоров, а также лимфокинов.

Существование механизмов дезактивации БАВ показывает, что аллергическая реакция в организме развивается тогда, когда выработка БАВ под действием комплексов антиген—антитело превышает возможности систем дезактивации БАВ и зашиты клеток или когда антитела и Т-киллеры непосредственно повреждают клетку.

Если биологически активных веществ вырабатывается больше, чем может быть дезактивировано собственными системами организма, наблюдается тенденция к лавинообразному нарастанию аллергического процесса и развитию шока. Это связано со способностью одних БАВ активировать образование других без участия комплекса антиген—антитело. Этим, по-видимому, можно объяснить развитие тяжелых аллергических реакций на сравнительно малые разрешающие дозы антигена.

Интенсивность выработки БАВ зависит от количества образующихся комплексов антиген—антитело. Возможность развития аллергической реакции после введения чрезвычайно малых сенсибилизирующих доз антигена объясняется тем, что на одну молекулу антигена вырабатывается около 100 000 молекул антител. Таким образом, в сенсибилизированном организме имеется достаточное количество антител для реакции со сравнительно большой разрешающей дозой антигена. Интенсивность образования БАВ зависит также от состояния и наследственно обусловленных возможностей систем, вырабатывающих БАВ. Эти системы по функциональным возможностям, а иногда и качественно отличаются в разных организмах. Следовательно, у двух индивидуумов с одинаковой характеристикой иммунной стадии выраженность аллергической реакции в биохимической стадии может быть различной.

Патофизиологическая стадия или стадия функциональных и структурных нарушений. Структурные и функциональные нарушения в органах при аллергии могут развиваться в результате прямого повреждения клеток лимфоцитами-киллерами и гуморальными антителами; в результате действия биологически активных веществ, индуцированных комплексом антиген—антитело; вторично как реакция на первичные аллергические изменения в каком-либо другом органе.

Нарушения, различные по форме и степени тяжести, вызванные комплексом антиген—антитело, в системах организма проявляются по-разному.

Система кровообращения. При аллергии может наблюдаться изменение работы сердца, понижение артериального давления, резкое нарушение проницаемости сосудов. Возможно развитие внезапной асистолии, которую в эксперименте удается вызвать введением брадикинина. Снижение артериального давления обусловлено в основном действием брадикинина и ацетилхолина. Гистамин, серотонин и некоторые простагландины также снижают артериальное давление. Биогенные амины и брадикинин повышают проницаемость сосудов так, что при аллергии во многих случаях развивается отек. Наряду с расширением сосудов в некоторых органах наблюдается их спазм. Так, у кроликов аллергическая реакция проявляется в виде спазма сосудов легких.

Дыхание. Кинины, серотонин и гистамин вызывают сокращение неисчерченной мышечной ткани бронхов. В сокращении бронхиальной мышцы особое значение имеет МРС-А. Спазм бронхов, а также отек слизистой дыхательных путей, гиперсекреция слизи приводят к нарушению вентиляции легких, кислородному голоданию.

Система крови. При аллергии может активироваться свертывающая система крови посредством активации фактора Хагемана, противосвертывающая — вследствие освобождения гепарина, фибринолитическая — в результате превращения профибринолизина в фибринолизин. Суммарный эффект нарушения свертываемости крови неодинаков на разных уровнях кровеносного русла. При анафилактическом шоке кровь, полученная из аорты и крупных сосудов, имеет пониженную свертываемость, в то время как в капиллярных сосудах наблюдается тромбоз.

Нервная система.Биологически активные амины и кинины в нормальных условиях являются медиаторами болевой чувствительности. Все они вызывают боль, жжение, зуд при воздействии в очень малых количествах, могут влиять и на другие нервные рецепторы в кровеносном русле и тканях.

Механизмы формирования аллергических реакций. Кроме аллергенов в возникновении аллергических реакций играет роль состояние организма. В связи с этим различают два основных вида аллергии: аллергия у лиц исходно здоровых и у больных.

Аллергия у исходно здоровых при нормальной выработке антител и БАВ вызывается избытком антигена. Механизм ее заключается в перенапряжении иммунной системы и систем выработки БАВ.

Возможность развития аллергии у здоровых индивидуумов обусловлена, по-видимому, преобладанием суммарной мощности систем выработки БАВ под действием большого количества комплексов антиген—антитело над системами дезактивации. Эволюция обусловила формирование таких систем, которые способны реагировать выбросом БАВ на попадание в организм даже единичного антигена (возбудителя). Они распространены по всему организму (например, тканевые базофилы). Суммарная способность всех тканевых базофилов организма к выбросу биогенных аминов при одномоментной дегрануляции велика. В то же время естественный отбор обусловил реакцию систем дезактивации на небольшие дозы БАВ, вырабатываемые при попадании антигена в организм в естественных условиях. Этим и объясняется преобладание потенциальной мощности систем выработки БАВ над системами их дезактивации.

Аллергия у больных или у лиц со скрытыми нарушениями может развиваться под действием обычных доз антигенов, от которого здоровые не заболевают. Сущность данного явления заключается в наследственных или приобретенных нарушениях механизмов каждой из 3 стадий аллергических реакций.

В иммунной стадии могут иметь значение следующие обстоятельства:

1. облегченное проникновение антигена в организм, например, при повышенной проницаемости сосудов слизистой оболочки бронхов;

2. замедленное разрушение аллергена;

3. нарушение регуляции иммунных реакций со стороны Т-супрессоров, обусловливающее усиленную выработку антител, особенно усиление синтеза IgE;

4. срыв иммунной толерантности и выработка аутоантител;

5. недостаточность иммунных реакций против инфекционных антигенов, возникновение повторных инфекций или хронического инфекционного процесса, который сопровождается аллергией вследствие избыточного образования инфекционных антигенов. Подобная ситуация возникает, например, при иммунодефицитах Т-лимфоцитов и сохранившейся способности вырабатывать гуморальные антитела. Стимуляция иммунокомпетентной ткани в этом случае ведет к ликвидации инфекционного процесса и одновременно к прекращению аллергической реакции.

В биохимической стадии аллергических реакций может наблюдаться нарушение образования и разрушения БАВ, что облегчает развитие аллергии. Нарушение образования и активации БАВ выражается увеличением образования БАВ; усилением освобождения БАВ, например, при повышении дегрануляции тканевых базофилов; усилением активации БАВ.

Нарушение систем дезактивации и ингибирования БАВ наблюдается при недостаточной выработке ингибиторов БАВ, например, при отеке Квинке, развивающемся при наследственном дефиците ингибитора калликреина и комплемента; при недостатке ферментов, разрушающих БАВ, при нарушении функций органов, дезактивирующих БАВ.

В стадии функциональных и структурных нарушений развитие аллергических реакций облегчается у лиц с недостаточной выработкой гормонов и веществ, контррегуляторных по отношению к флогогенным (вызывающим воспалительную реакцию) БАВ — катехоламинов, гликокортикоидов, кортикотропина, а также у лиц с повышенной чувствительностью клеток-мишеней к действию БАВ.

Не нашли то, что искали? Воспользуйтесь поиском:

Применение ферментных препаратов при нарушениях пищеварения у детей

*Импакт фактор за 2020 г. по данным РИНЦ

Журнал входит в Перечень рецензируемых научных изданий ВАК.

Читайте в новом номере

Пищеварение является единым, целостным процессом благодаря тесным взаимосвязям между деятельностью различных отделов пищеварительного тракта. Нарушение функций одного из отделов желудочно–кишечного тракта, как правило, приводит к расстройству функции других органов.

Протеолитические ферменты — что это такое и для чего нужны?

Применение протеолитических ферментов — это современная тенденция в медицине и диетологии, пришедшая на замену агрессивной фарм терапии инфекционных и системных заболеваний, а также строгих диет при нарушениях пищеварения.

Протеолитические ферменты (протеазы) – это ферменты, расщепляющие белок. Синтезируются и выделяются поджелудочной железой в составе её секрета — панкреатина.

Многие из нас осведомлены о действии пищеварительных ферментов, необходимых для переваривания основных компонентов пищи – белков, жиров и углеводов. Но мало кто знает о том, что существуют энзимы, которые обеспечивают массу других важных процессов во всём организме.

Протеолитические энзимы являются универсальными, и могут работать как в пищеварительном тракте, так и в крови и всех кровоснабжаемых органах и тканях. Их ещё называют системными ферментами, поскольку они оказывают влияние на все системы организма.

При употреблении протеаз вместе с пищей, они принимают участие в пищеварении. Если же их употреблять натощак, ферменты в пищеварительном тракте всасываются в кровь и начинают действовать в кровеносном русле, а также разносятся с током крови ко всем тканям и органам, где в них имеется потребность.

Рассмотрим основные системные («не пищеварительные») функции протеаз:

1) Повреждают белковые оболочки патогенных организмов и вирусов, тем самым делая их видимыми для наших иммунных клеток. В результате организм значительно быстрее и эффективные справляется с возбудителями инфекции, как в острой, так и в хронической стадии заболевания. При этом следует отметить, что протеолитические ферменты справляются со ВСЕМИ ВИДАМИ патогенных микроорганизмов, а значит, являются универсальным противовирусным, антибактериальным и противогрибковым средством системного действия.

2) Расщепляют чужеродные организму белки. Это особенно важно для тех, у кого имеются аллергические реакции на агенты белковой природы. В результате аллергическая реакция становиться гораздо менее выраженной, симптомы аллергии проходят быстрее.

3) Растворяют фибриновые нити, которыми наш организм изолирует участки хронических воспалений. В результате улучшается кровоток, приходит в норму вязкость крови, растворяются тромбы. В соединительной ткани устраняются спайки – тем самым, улучшается эластичность и подвижность мышц и связок, уходят болевые симптомы, которые были вызваны перенапряжением в соответствующих участках.

4) Участвуют в утилизации дефектных и повреждённых клеток. А значит, способствуют процессам омоложения, регенерации и восстановления тканей. Уменьшают воспаление, способствуют более быстрому и эффективному заживлению ран с минимальным образованием рубцов (шрамов). При этом используются как внутрь, так и наружно на повреждённую область. Причём местное применение активно используется в пластической хирургии и стоматологии во всех развитых странах.

Все вышеперечисленные функции должны ежедневно реализоваться в нашем организме.

Для этого поджелудочной железой должно синтезироваться достаточное количество панкреатина, которое покрывало бы и пищеварительные и непищиварительные потребности организма в протеазах.

Можно сказать с уверенностью, что более чем у 80% современных людей поджелудочная железа не справляется с возложенной на неё нагрузкой. Это происходит по 3м основным причинам:

1) дисфункции щитовидной железы, вызванные глистными инвазиями, отравлениями, вирусными инфекциями, гормональными отклонениями и тп.

2) потребление чрезмерных объёмов пищи, а также некачественных, неестественных для организма продуктов.

3) недостаток поступления в организм веществ, необходимых для синтеза ферментов (как следствие значительного уменьшения питательной ценности современных продуктов).

Таким образом, протеолитические ферменты могут быть рекомендованы каждому человеку для улучшения общего состояния организма.

Особенно важным и необходимым является дополнительное поступление протеолитических ферментов (как системных) в таких случаях:

  • Острые воспалительные процессы, в том числе при аутоиммунных заболеваниях
  • Борьба с очагами хронической инфекции в организме
  • Период реабилитации после травм и операций
  • В протоколах лечения доброкачественных и злокачественных новообразований, как источник реагентов, необходимых для «разложения» опухоли.

Для поддержки пищеварения протеазы необходимы при:

  • Явных дисфункциях поджелудочной железы
  • Употребление больших объёмов белковой пищи, а также трудноусвояемых белков – бобовых (в том числе сои), грибов, свинины и пр.

Важно отметить, что длительно могут применяться только энзимы неживотного происхождения. Достоверно известно, что панкреатин животных (чаще всего свиной), используемый в большинстве фарм препаратов, нарушает деятельность поджелудочной железы человека, уменьшая собственную секрецию панкреатина.

Ферменты, полученные из растений и некоторых видов микроорганизмов, не конкурируют с нашим панкреатином, не вызывают привыкания, не нарушают естественные процессы организма.

Они оказывают поддерживающее действие, могут употребляться ежедневно в течение длительных периодов.

Ведущая компания в США по производству натуральных энзимов, которая представлена на сайте IHERB, — это ENZYMEDICA. Именно её продукцию мы предлагаем в нашем магазине.

Одним из самых лучших препаратов, содержащих протеолитические ферменты, является «Enzyme Defense», Enzymedica. О нём вы можете прочесть множество восторженных отзывов, оставленных покупателями на сайте IHERB. Приведём самые распространённые:

«Палочка-выручалочка! При малейшем намеке на простуду, по 1 капсюле 2 раза вдень и все как рукой снимает. Желудок просто рад.

«Обычно болеем ангинами по несколько раз в сезон недели по две. Этой зимой болели 2 дня!»

«Наконец расстался с хроническим гайморитом! 1 банка — 2 месяца по 2 капсулы натощак. Все препараты, назначаемые врачами до этого, только временно облегчали симптомы.»

«Через неделю приёма началось обострение герпеса. Сначала испугался, но симптомы быстро прошли и больше не возвращались».

«В комплексе с «Candidase» того же производителя удалось справиться с кандидой в кишечнике, наладилось пищеварение.»

«Начали рассасываться бородавки!»

«Страдаю ревматоидным артритом. При приёме препарата значительно уменьшается воспаление и боль не такая сильная.»

«Аутичный ребёнок. Курс приёма — значительно улучшились когнитивные функции.»

Протеолиз

I

Протеолиз (проте [ины] (Протеины) + lysis разложение, распад)

ферментативный гидролиз белков и пептидов, катализируется протеолитическими ферментами (пептид-гидролазами, протеазами) и играет важную роль в регуляции обмена веществ в организме. С протеолизом связаны такие фундаментальные процессы жизнедеятельности, как внутриклеточный распад белков (Белки) и регуляция их кругооборота (см. Азотистый обмен), Пищеварение, оплодотворение, морфогенез, защитные реакции (см. Иммунитет), адаптационные перестройки обмена. Нарушение П. и его регуляции лежит в основе развития многих патологических состояний.

Различают два типа протеолиза: приводящий к полному расщеплению белковых молекул до отдельных аминокислот и частичный, так называемый ограниченный протеолиз, при котором избирательно гидролизуется одна или несколько пептидных связей в молекуле белка. Протеолиз первого типа происходит в результате согласованного действия различных протеолитических ферментов, тогда как реакции ограниченного П. катализируются отдельными специфическими протезами. Полный П. осуществляется при внутриклеточном распаде белков под влиянием тканевых протеаз (часто называемых катепсинами). Он протекает во многих случаях внутри лизосом — клеточных органелл, содержащих набор гидролитических ферментов. Путем полного П. происходит удаление из организма аномальных белков, образующихся в результате мутаций и ошибок биосинтеза. Полное расщепление белковых молекул наблюдается также при различных морфогенетических превращениях и адаптационных перестройках обмена. В процессах пищеварения под влиянием протеолитических ферментов желудочно-кишечного тракта Пепсина, Трипсина, Химотрипсина и ряда пептидаз происходит полный П. белков пищи.

Ограниченный П. белковых молекул имеет первостепенное значение для регуляции обмена веществ в организме. Реакции ограниченного П. участвуют в процессе образования и инактивации практически всех ферментов, гормонов и других биологически активных белков и пептидов и, следовательно, в контроле активности основных биорегуляторов. Например, ограниченный П. происходит при превращении неактивных проферментов пепсиногена, трипсиногена и др. в соответствующие активные протеазы, а также при образовании ферментов, участвующих в свертывании крови, фибринолизе, активации системы комплемента, ренин-ангиотензинной и калликреин-кининовой систем и др. Эти системы организма активируются в результате каскадного процесса, на каждой из стадий которого из неактивного профермента путем ограниченного П. образуется фермент, катализирующий последующую реакцию. Примером роли ограниченного П. в биогенезе гормонов может служить специфический гидролиз ряда пептидных связей в молекуле проопиомеланокортина (см. Регуляторные пептиды), в результате которого из этого полифункционального биосинтетического предшественника образуются АКТГ, β-липотропин, эндорфины, меланоцитостимулирующие гормоны, из проинсулина — инсулин, из проглюкагона — глюкагон. Таким же образом из своих неактивных предшественников образуются факторы роста и другие регуляторные пептиды. При некоторых эндокринных заболеваниях, например наследственной проинсулинемии, нарушен ограниченный П. проинсулина. Основным молекулярным механизмом образования, инактивации и модификации различных нейропептидов также является ограниченный П., который тем самым играет существенную роль в реализации таких нейрофизиологических процессов, как память, боль, поведенческие реакции и др.

Ограниченный П. представляет собой один из основных механизмов посттрансляционной модификации — процессинга белков, этапа, на котором из вновь синтезированных полипептидных цепей формируются «зрелые» белковые молекулы. С помощью ограниченного П. образуются функционально активные белки и пептиды не только у высших, но и у простейших организмов. Так, путем ограниченного П. из вирусного полипротеина получаются специфические белки различных вирусов, т.е. ограниченный П. является одним из важнейших механизмов репродукции вирусов и играет большую роль в развитии вирусных инфекций.

В организме различные белки имеют разную продолжительность жизни: для одних белков она составляет минуты, для других — многие сутки. Продолжительность жизни белков и скорость их кругооборота определяются как скоростью их биосинтеза, так и скоростью протеолиза. Скорость П. белков зависит от ряда факторов, в частности от их взаимодействия с другими веществами: субстратами, коферментами, аллостерическими эффекторами (см. Ферменты), а также от химических модификаций, которым белок может подвергаться в клетке (гликозилирования, фосфорилирования и др.).

При переходе организма из одного физиологического состояния в другое (например, на определенных стадиях эмбриогенеза), а также при голодании и некоторых стрессорных реакциях наблюдается резкое усиление П. тканевых белков. Локальное усиление П. белков межклеточного матрикса (коллагена, фибронектина, ламинина, протеогликанов и др.) отмечается, например, в процессе разрушения хряща при ревматоидном артрите, базальной мембраны при гломерулонефрите, а также при инвазивном росте и метастазировании опухолей. Повышенный П. этих белков, а также эластина наблюдается в случае разрушения легочной ткани при эмфиземе легкого, туберкулезе легких и др. Рассеянный склероз и ряд других заболеваний нервной системы, сопровождающихся демиелинизацией, связаны с усилением П. основного белка миелина. При мышечной дистрофии отмечают повышенный П. белков миофибрилл. Во всех этих случаях усиленный распад белков обусловлен освобождением внутриклеточных протеаз и нарушением регуляции их активности.

Изменение П. белков при ряде других заболеваний может быть вызвано синтезом дефектного белка-субстрата. Это наблюдается при некоторых наследственных энзимопатиях, когда недостаточность фермента может быть о словлена синтезом белка-субстрата, обладающего повышенной чувствительностью к действию протеаз (например, β-галактозидазы при некоторых формах галактосиалидоза), или нарушением ограниченного П. биосинтетического предшественника ферментного белка и образованием вследствие этого аномальной формы фермента (например, аномальный α-субъединицы гексозаминидазы А при некоторых вариантах болезни Тея — Сакса).

Катализирующие гидролиз белков пептидгидролазы (протеазы, пептидазы) представляют собой большую группу ферментов, различающихся по своим физико-химическим свойствам, структуре и субстратной специфичности. Эти ферменты имеют универсальное распространение и локализованы в различных субклеточных структурах: ядрах, лизосомах, митохондриях, пластинчатом комплексе, микросомной и плазматической мембранах, цитозоле и др. Различают две большие группы протеаз: эндопептидазы, расщепляющие в белках внутренние и пептидные связи, и экзопептидазы, которые гидрализуют связи на N- и С-концевых участках пептидной цепи. По строению активного центра фермента и механизму его действия выделяют 4 семейства эндопептидаз: аспартильные, серниновые, цистеиновые и металлопротеазы, к аспартильным протеазам относятся пепсин, ренин, катепсины D, Е и ряд других; к сериновым ферментам принадлежат трипсин, химотрипсин, эластаза, подавляющее большинство протеаз плазмы крови (факторы свертывания крови, фибринолиза, системы комплемента, кининовой системы), многие внутриклеточные и бактериальные протеазы. К цистеиновым протеазам относятся многие катепсины: В, H, L, ряд бактериальных и растительных ферментов, из которых наиболее хорошо изучен папаин. Представителями металлопротеаз являются коллагеназа, термолизин и др. Экзопептид разделяют на аминопептидазы и карбоксипептидазы, дипептидиламинопептидазы и дипептидилкарбоксипептидазы, которые катализируют отщепление аминокислот или дипептидов от N- и С-конца пептидной цепи соответственно, и дипептидазы, катализирующие гидролиз дипептидов. Многие экзопептидазы являются металлоферментами.

Большинство протеаз синтезируется в виде неактивных предшественников — проферментов; их активация происходит в результате ограниченного П., протекающего либо аутокаталитически, либо под действием определенных протеаз. Многие протеазы подвергаются аутолизу (самоперевариванию), при этом часто теряют ферментативную активность. В некоторых случаях (например, у Са 2+ -зависимых нейтральных протеаз) на определенных этапах аутолиза отмечают активацию ферментов. В плазме крови и других биологических жидкостях также в различных клетках и тканях присутствуют белковые ингибиторы, специфически блокирующие активность отдельных протеаз или групп протеаз. С помощью систем таких ингибиторов осуществляются регуляция активности протеаз в физиологических условиях и предохранение белков от их действия. Нарушение баланса между протеазами и соответствующими ингибиторами часто приводит к развитию патологии.

Для коррекции П. в клинической практике в качестве лекарственных средств используют протеолитические ферменты и их ингибиторы. Так, для нормализации П. пищевых белков при некоторых желудочно-кишечных заболеваниях применяют препараты пепсина, трипсина, химотрипсина для лизиса сгустков фибрина при тромболитической терапии используют плазмин (фибринолизин), стрептокиназу и др.; при лечении гнойных ран, ожогов, пролежней для П. белков некротизированных тканей применяют трипсин, химотрипсин и некоторые другие протеазы. При заболеваниях, сопровождающихся усиленным П. белков (например, при панкреатитах) используют препараты ингибиторов протеаз: трасилол и др.).

Библиогр.: Веремеенко К.Н., Голобородько О.П. и Кизим А.И. Протеолиз в норме и при патологии, Киев, 1988, библиогр.; Мосолов В.В. Протеолитические ферменты, М., 1971, библиогр.; Сыновец А.С. и Левицкий А.П. Ингибиторы протеолитических ферментов в медицине, Киев, 1985, библиогр.; Хорет А. Молекулярные основы патогенеза болезней, пер. с польск., М., 1982.

II

Протеолиз (Протеины + греч. lysis растворение, разрушение)

процесс ферментативного расщепления белков до пептидов и аминокислот.

Протеолитические ферменты

Протеолитические ферменты (синоним: протеазы) — белки, пептид-гидролазы, ферменты класса гидролаз, расщепляющие пептидные связи между аминокислотами в белках и пептидах.

Протеолитические ферменты играют важнейшую роль в переваривании белков пищи в желудке и кишечнике человека. Большинство протеолитических ферментов органов пищеварения продуцируется в виде проферментов. Физиологический смысл этого заключается в том, чтобы акт продукции фермента (профермента) был отделен от акта его активации — превращения в фермент и, таким образом, белки тканей, продуцирующих ферменты, не подвергались воздействию этих самых ферментов.

Классификация протеолитических ферментов

Протеазы подразделяются на:

  • экзопептидазы (пептидазы), гидролизующие (расщепляющие), преимущественно, внешние пептидые связи в белках и пептидах
  • эндопептидазы (протеиназы), гидролизующие, преимущественно, внутренние пептидые связи

К эндопептидазам относятся наиболее важные для желудочного пищеварения протеолитические ферменты пепсин, гастриксин и химозин, а также вырабатываемые в виде проферментов поджелудочной железой и участвующие в кишечном пищеварении трипсин, химотрипсин и эластаза.

Экзопептидазами являются протеолитические ферменты карбоксипептидаза А и карбоксипептидаза В, также присутствующие в панкреатическом соке. К экзопептидазам относятся ферменты кишечного сока: аминопептидазы (аланин-аминопептидаза и лейцин-аминопептидаза) и дипептидазы (глицилглицин-дипептидаза, глициллейцин-дипептидаза, пролиназа и пролидаза).

Протеазы разделяют на шесть групп, в зависимости от строения активного центра:

  • сериновые; в активном центре этих протеаз присутствует серин; сериновые протеазы — трипсин, химотрипсин и эластаза составляют 44% от общего количества белка экзокринной части поджелудочной железы
  • треониновые
  • цистеиновые
  • аспартильные — желудочные протеазы пепсин, гастриксин, катапепсины Д и Е и другие
  • металлопротеазы — например, карбоксипептидазы А и В являются Zn-металлопротеазами
  • глютаминовые
Протеолитические ферменты в лекарствах

Протеолетические ферменты (протеазы) является активным компонентам во многих ферментных препаратах, применяемых для коррекции секреторной дисфункции желудка и нарушений процесса пищеварения в тонкой кишке.

Первый тип лекарств, содержащих протеолетические ферменты,— экстракты слизистой оболочки желудка, основным действующим веществом которых является пепсин. Он, а также другие содержащиеся в слизистой оболочки желудка пептидазы, расщепляют практически все природные белки. Эти лекарства используются преимущественно при гастрите с пониженной кислотностью и не рекомендуются при лечении заболеваний ЖКТ с повышенной кислотностью.

Второй тип содержащих протеолетические ферменты лекарств — комплексные препараты, содержащие основные ферменты поджелудочной железы домашних животных. Такие лекарства способствуют купированию клинических признаков внешнесекреторной недостаточности поджелудочной железы, к которым относят снижение аппетита, тошнота, урчание в животе, метеоризм, стеаторею, креаторею и амилорею. Самым популярным лекарством, содержащим комплекс панкреатических ферментов, включающим протеазы, является панкреатин. Кроме него, имеется множество других препаратов, содержащих протеолетические ферменты, ряд из них приведена в таблице (Саблин О.А., Бутенко Е.В.):

Фестал и ферменты поджелудочной железы при аллергии

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Ферментные препараты как фестал назначают при пищевой аллергии, а также и при других аллергических реакциях. Атопический дерматит, часто наблюдаемый у младенцев, связан, прежде всего, с развитием аллергии у ребенка. Также, при пищевой непереносимости могут возникнуть как расстройства желудочно-кишечного тракта, так и аллергический ринит и даже бронхиальная астма.

Научно доказано, что молоко матери является необходимым для младенца в период формирования иммунной системы, и если вы решили перейти с грудного молока на искусственное вскармливание, не спешите. Перед этим проведите ребенку курс ферментотерапии (например, фесталом) для снижения антигенной нагрузки на неокрепший организм ребенка и для помощи незрелой пищеварительной системе.

В результате проведенных исследований, ученые установили, что ферменты поджелудочной железы снижают выраженность аллергических реакций при пищевой непереносимости. Эти результаты спорные, однако, если у ребенка есть аллергия на какой-либо продукт питания, ему вовсе не навредит прием фестала или другого ферментного препарата. Пищевая аллергия часто возникает на фоне недостатка или недостаточной активности собственных ферментов. Именно по этой причине прием данного препарата или других ферментов может улучшить состояние пациента. Чаще всего непереносимостью продуктов страдают дети, у которых система пищеварения еще недостаточно сформировалась. Фестал и другие ферментные препараты не токсичны, у них нет противопоказаний и побочных явлений, так что их смело можно давать детям после консультации с врачом, который правильно определит дозировку препарата.

Автор: Пашков М.К. Координатор проекта по контенту.

Ложная аллергия

Псевдоаллергия (греч. pseudes ложный + аллергия; синоним параллергия) — патологический процесс, по клиническим проявлениям похожий на аллергию, но не имеющий иммунологической стадии развития, тогда как последующие две стадии — освобождения (образования) медиаторов (патохимическая) и стадия клинических симптомов (патофизиологическая) — при псевдоаллергии и истинной аллергии совпадают.

К псевдоаллергическим процессам относят только те, в развитии которых ведущую роль грают медиаторы, присущие и патохимической стадии истинных аллергических реакций. Поэтому многие реакции, клинически схожие с ними, но не имеющие в составе патохимической стадии медиаторов аллергии, не включаются в эту группу. Например, лактазная недостаточность клинически похожа на аллергию, однако механизм развития диареи при ней связан с нарушением расщепления лактозы, которая подвергается брожению с образованием уксусной, молочной и других кислот, что приводит к сдвигу рН кишечного содержимого в кислую сторону, скоплению воды в просвете кишечника и его раздражению, усилению перистальтики и диарее. Псевдоаллергические реакции наиболее часто встречаются при лекарственной и пищевой непереносимости. Многие лекарственные препараты (ненаркотические анальгетики, рентгеноконтрастные вещества, плазмозамещающие растворы и др.) чаще приводят к развитию П., чем аллергии.

Частота псевдоаллергических реакций на лекарственные препараты варьирует в зависимости от вида препарата, путей его введения и других условий и колеблется, по данным разных авторов, от 0,01 до 30%. Даже такой аллергенный антибиотик, как пенициллин, вызывает значительное число псевдоаллергических реакций. Что касается непереносимости пищевых продуктов, то полагают, что на каждый случай пищевой аллергии приходится примерно 8 случаев П., причем причиной последней могут быть как сами пищевые продукты, так и многочисленные химические вещества (красители, консерванты, антиокислители и др.), добавляемые к пищевым продуктам или случайно попадающие в них. Большинство аллергенов могут приводить к развитию как аллергических, так и псевдоаллергических реакций. Разница заключается в частоте возникновения тех и других на каждый конкретный аллерген. Даже атопические заболевания, являющиеся истинно аллергическими, могут иногда развиваться по механизму псевдоаллергии, т.е. без участия иммунного механизма.

В патогенезе П. различают три механизма; гистаминовый, нарушение активации системы комплемента и расстройство метаболизма арахидоновой кислоты. В каждом конкретном случае развития псевдоаллергической реакции ведущую роль играет один из указанных механизмов. Суть гистаминового механизма заключается в том, что в биологических жидкостях увеличивается концентрация свободного гистамина, который оказывает через Н1- и Н2-рецепторы клеток-мишеней патогенный эффект. Гистаминовые рецепторы имеются на различных субпопуляциях лимфоцитов, тучных клетках (лаброцитах), базофилах, эндотелиальных клетках посткапиллярных венул и др. Конечный результат действия гистамина определяется местом его образования, количеством и соотношением Н1- и Н2-рецепторов на поверхности клеток. В легких гистамин вызывает спазм бронхов, в коже — расширение венул и повышение их проницаемости, что проявляется гиперемией кожи и развитием ее отека, а при системном влиянии на сосудистую систему приводит к гипотензии. Увеличение концентрации гистамина при П. может идти несколькими путями. Так, действующие факторы оказывают прямое влияние на тучные клетки или базофилы и вызывают либо их разрушение, сопровождающееся освобождением медиаторов, либо, воздействуя на эти клетки через соответствующие рецепторы, активируют их и тем самым вызывают секрецию гистамина и других медиаторов. В первом случае действующие факторы обозначают как неселективные, или цитотоксические, во втором — как селективные, или нецитотоксические. Нередко это различие в эффекте связано с концентрацией (дозой) действующего фактора: при больших дозах фактор может быть неселективным, при малых концентрациях — селективным. Из физических факторов цитотоксическое действие оказывают замораживание, оттаивание, высокая температура, ионизирующее излучение, в частности рентгеновское, излучение УФ-спектра. Среди химических факторов таким действием обладают детергенты, сильные щелочи и кислоты, органические растворители. Селективное действие оказывают полимерные амины (например, вещество 48/80), определенные антибиотики (полимиксин В), кровезаменители (декстраны), пчелиный яд, рентгеноконтрастные препараты, продукты жизнедеятельности глистов, кальциевые ионофоры, а из эндогенно образующихся веществ — катионные белки лейкоцитов, протеазы (трипсин, химотрипсин), некоторые фрагменты комплемента (С4а, С3а, С5а). Выраженным гистаминосвобождающим действием обладают многие пищевые продукты, в частности рыба, томаты, яичный белок, клубника, земляника, шоколад. Указанные продукты, как и многие другие, способны вызывать не только псевдоаллергические реакции, они могут включать иммунный механизм и тем самым приводить к развитию пищевой аллергии.

Другой путь увеличения концентрации гистамина — нарушение механизмов его инактивации. В организме имеется несколько путей инактивации гистамина: окисление диаминооксидазой, метилирование азота в кольце, окисление моноаминооксидазой или подобными ферментами, метилирование и ацетилирование аминогруппы боковой цепи, связывание белком плазмы крови (гистаминопексия) и гликопротеидами. Мощность инактивирующих механизмов настолько велика, что введение в двенадцатиперстную перстную кишку здорового взрослого человека через зонд 170-200 мг гистаминхлорида (из расчета до 2,75 мг/кг) вызывает через несколько минут лишь небольшое ощущение прилива к лицу, уровень гистамина в крови этом практически не повышается. У лиц с повышенной инактивирующей способностью гистамина поступление в организм намного большего его количества обусловливает ярко выраженную клиническую картину (головная крапивница, диарея), что сопровождается значительным увеличением концентрации гистамина в крови.

Третий путь увеличения концентрации гистамина — алиментарный, связанный с употреблением в пищу продуктов, содержащих и другие амины в довольно значительных количествах. Так, в ферментированных сырах гистамина содержится до 130 мг на 100 г продукта, в колбасе типа салями — 22,5 мг, других ферментированных продуктах — до 16 мг, консервах 1-35 мг. Шоколад, сыр «Рокфор», консервированная рыба содержат значительное количество тирамина. Кроме того, к повышенному образованию соответствующих аминов (гистамина, фенилэтиламина, тирамина) из гистидина, фенилаланина, тирозина ведут некоторые типы дисбактериоза кишечника, сопровождающиеся размножением кишечной микрофлоры с декарбоксилирующей активностью.

Второй механизм псевдоаллергических реакций включает неадекватное усиление классического или альтернативного пути активации комплемента, в результате чего образуются многочисленные пептиды с анафилатоксической активностью. Они вызывают освобождение медиаторов из тучных клеток, базофильных тромбоцитов, нейтрофилов и приводят к агрегации лейкоцитов, повышению их адгезивных свойств, спазму гладких мышц и другим эффектам, что создает картину анафилактоксической реакции вплоть до выраженного шока (см. Анафилактический шок). Активацию комплемента вызывают полианионы и особенно сильно — комплексы полианионов с поликатионами. Так, комплекс гепарин + протамин активирует С1, начальным звеном которой является связывание CIq. Полисахариды и полианионы определенной молекулярной массы активный альтернативный путь каскада превращений комплемента за счет связывания ингибитора третьего компонента.

Выраженную активацию комплемента вызывают протеазы. Так, плазмин и трипсин активируют CIS, С3 и фактор В, калликреин расщепляет С3 с образованием С3в. Комплемент может фиксироваться на агрегированных молекулах гамма-глобулина и в результате этого активироваться. Агрегация молекул белка в организме наблюдается при криопатиях. Вне организма это происходит при длительном хранении пастеризованной плазмы, растворов сывороточного альбумина человека, гамма-глобулина, особенно плацентарного. Внутривенное введение таких препаратов может вызвать выраженную активацию комплемента и привести к развитию псевдоаллергии.

Рентгеноконтрастные препараты кроме действия на тучные клетки и базофилы могут активировать комплемент. Это связано с повреждением эндотелиальных клеток сосудов, что ведет к активации фактора Хагемана с последующим образованием плазмина, который уже активирует С1. Одновременно активируется калликреин-кининовая система. Декстраны также могут активировать комплемент. Аналогичные процессы возможны и при проведении гемодиализа.

Наиболее яркая картина П. наблюдается при дефиците игнибитора первого компонента комплемента — С1-ингибитора. В норме его концентрация в плазме крови составляет 18,0±5 мг%. Дефицит С1-ингибитора связывают с мутацией гена (частота около 1:100 000) и аутосомно-доминантным наследованием, проявляющимся у гетерозигот по этому дефекту. В большинстве случаев дефицит этого ингибитора связан с нарушением его синтеза в печени, что ведет к резкому снижению концентрации С1-ингибитора в плазме. Однако в ряде случаев отмечается отсутствие активности ингибитора при нормальном его уровне, когда ингибитор структурно изменен, или даже при повышенном уровне ингибитора, находящегося в комплексе с альбумином. Дефицит ингибитора, как и сниженная его активность, приводят к развитию псевдоаллерпической формы отека Квинке. Под влиянием различных повреждающих воздействий (например, экстракция зуба), физической нагрузки, эмоционального стресса происходит активация фактора Хагемана (XII фактор свертывания крови). Активированный фактор включает плазминовую систему с образованием из плазминогена плазмина, который, в свою очередь, запускает начальное звено классического пути активации комплемента начиная с С1. Активация идет до С3 и здесь прекращается, т.к. С3 имеет свой ингибитор. Однако на начальном этапе из С2 образуется кининоподобный фрагмент, который и вызывает повышение проницаемости сосудов и развитие отека.

Третий механизм развития П. связан с нарушением метаболизма ненасыщенных жирных кислот и, в первую очередь, арахидоновой. Последняя освобождается из фосфолипидов (фосфоглицеридов) клеточных мембран нейтрофилов, макрофагов, тучных клеток, тромбоцитов и др. под действием внешних стимулов (повреждение лекарством, эндотоксином и др.). Молекулярный процесс освобождения довольно сложен и включает как минимум два пути. Оба они начинаются с активации метилтрансферазы и заканчиваются накоплением кальция в цитоплазме клеток, где он активирует фосфолипазу А2, которая отщепляет арахидоновую кислоту от фосфоглицеридов. Освободившаяся арахидоновая кислота метаболизируется циклоксигеназным и липоксигеназным путями. При первом пути метаболизма вначале разуются циклические эндопероксиды, которые затем переходят в классические простагландины групп Е2, Е2? и Д2 (ПГЕ2, ПГF2? и ПГД2, простациклин и тромбоксаны. При втором пути под влиянием липоксигеназ образуются моногидропероксижирные кислоты. Хорошо изучены продукты, образующиеся под действием 5-липоксигеназы. Вначале образуется 5-гидроперокси-эйкозатетраеновая кислота, которая может превращаться в нестабильный эпоксид-лейкотриен А4 (ЛТА4). Последний может претерпевать дальнейшие превращения в двух направлениях. Одно направление — энзиматический гидролиз до лейкотриена В4 (ЛТВ4), другое — присоединение глутатиона с образованием лейкотриена С4 (ЛТС4). Последующие дезаминирования переводят ЛТС4, в ЛТД4 и ЛТЕ4. Ранее, когда химическая структура этих субстанций была не известна, их обозначали как «медленно действующее вещество анафилаксии». Образующиеся продукты метаболизма арахидоновой кислоты оказывают выраженное биологическое действие на функцию клеток, тканей, органов и систем организма, а также участвуют в многочисленных механизмах обратных связей, тормозя или усиливая образование как медиаторов своей группы, так и медиаторов иного происхождения. Эйкозаноиды участвуют в развитии отека, воспаления, бронхоспазма и др. Считают, что нарушения метаболизма арахидоновой кислоты наиболее ярко проявляются при непереносимости ненаркотических анальгетиков. Из этой группы лекарств наибольшее количество реакций связано с приемом ацетилсалициловой кислоты. Обычно наряду с ацетилсалициловой кислотой пациенты оказываются чувствительными к другим анальгетикам — производным пиразолона, парааминофенола, нестероидным противовоспалительным препаратам разных химических групп.

Полагают, что анальгетики угнетают активность циклоксигеназы и сдвигают баланс в сторону преимущественного образования лейкотриенов. Однако существуют и другие механизмы непереносимости. Так, часть пациентов оказывается одновременно чувствительной и к тартразину, который не изменяет образования простагландинов. Кромолин-натрий (интал), блокирующий освобождение медиаторов из тучных клеток, может блокировать и реакции на ацетилсалициловую кислоту, хотя и не угнетает биосинтез простагландинов. Поэтому возникает предположение, что тучные клетки могут быть клетками-мишенями для анальгетиков. Это подтверждается и тем, что у больных реакция на анальгетик нередко сопровождается увеличением содержания гистамина в плазме крови и его выведения с мочой. Возможность участия комплемента в реакциях на анальгетики пока не доказана. Значительное внимание уделяется выяснению возможности включения иммунологических механизмов в реализацию патогенного действия этих препаратов. Однако это предположение не нашло убедительного подтверждения и сложилось представление, что непереносимость ацетилсалициловой кислоты и других анальгетиков относится к П. Отрицание возможности иммунологического механизма, и в первую очередь IgE-опосредованного, базируется, по данным ряда авторов, на следующих наблюдениях: 1) у большинства пациентов с непереносимостью ацетилсалициловой кислоты отсутствует атопия, и немедленных кожных реакций ни на этот препарат, ни на его конъюгаты у них не возникает; 2) чувствительность к препарату не передается пассивно сывороткой крови; 3) у пациентов с повышенной чувствительностью к ацетилсалициловой кислоте она наблюдается и к другим химически различным анальгетикам.

Клиническая картина псевдоаллергических заболеваний аналогична или очень близка к клинике аллергических болезней. В ее основе лежит развитие таких патологических процессов, как повышение проницаемости сосудов, отек, воспаление, спазм гладкой мускулатуры, разрушение клеток крови. Эти процессы могут быть локальными, органными и системными. Они проявляются в виде круглогодичного ринита, крапивницы, Квинке отека, периодических головных болей, нарушения функции желудочно-кишечного тракта (метеоризм, урчание, боли в животе, тошнота, рвота, диарея), бронхиальной астмы, сывороточной болезни, анафилактоидного шока, а также избирательного поражения отдельных органов (гастрит, энтерит миокардит и др.). Иногда происходит сочетание аллергических и псевдоаллергических механизмов развития заболевания. Это наиболее ярко проявляется в развитии бронхиальной астмы, сочетающейся с непереносимостью ацетилсалициловой кислоты и других анальгетиков и получившей название аспириновой бронхиальной астмы. Ее наиболее выраженная форма проявляется собственно астмой, полипозом носа и повышенной чувствительностью к ацетилсалициловой кислоте и обозначается как аспириновая, или астматическая, триада. Сочетание астмы с повышенной чувствительностью к ацетилсалициловой кислоте выявляется, по данным многих авторов, у 10-20% больных атонической или инфекциоинозависимой формами бронхиальной астмы; изолированная аспириновая астма встречается не более чем в 3% случаев. Существенно, что: 1) повышенная чувствительность к ацетилсалициловой кислоте является приобретенным состоянием и сохраняется вне приема препаратов этой группы; 2) указанные препараты вызывают развитие патологических процессов в верхних и (или) нижних дыхательных путях; 3) у некоторых пациентов могут наблюдаться симптомы поражения только носа и (или) области глаз в один период времени и полная астматическая классическая триада — в другой. С учетом того, что клиническая картина аллергических и псевдоаллергических заболеваний часто совпадает, а подходы к их лечению различаются, возникает необходимость их дифференциации. Иногда заключение о псевдоаллергическом характере реакции делается на основе знания свойств вызывающего реакцию аллергена. Так, например, известно, что анальгетики нарушают метаболизм арахидоновой кислоты, рентгеноконтрастные вещества прямо вызывают освобождение гистамина из базофилов и тучных клеток. Чаще же приходится применять весь арсенал специфических аллергологических диагностических методов. Отрицательные их результаты вместе с данными анамнеза и клиники позволяют сделать заключение о неиммунологическом характере заболевания. В табл. 1 приведены некоторые общие дифференциально-диагностические признаки аллергических и псевдоаллергических реакций, а в табл. 2 — дифференциальная диагностика двух форм отека Квинке.

Таблица 1
Общие дифференциально-диагностические признаки аллергических и псевдоаллергических реакций

Признаки Аллергические реакции Псевдоаллергические реакции
Аллергические заболевания Часто Редко
Атопические заболевания у больного Часто Редко
Количество аллергена. вызывающее реакцию Минимальное Относительно большое
Зависимость между дозой аллергена и выраженностью реакции Отсутствует Есть
Кожные тесты со специфическими аллергенами Обычно положительные Отрицательные либо ложно положительные
Общий IgE в сыворотке крови Повышен В пределах нормы
Специфический IgE Выявляется Отсутствует
Реакция Пряуснитца-Кюстнера Положительная Отрицательная

Таблица 2
Дифференциально-диагностические признаки двух форм ангионевротического отека (отека Квинке)

Признаки Псевдоаллергический наследственный ангионевротический отек Аллергический ангионевротический отек
Начало заболевания С раннего детства Чаще у взрослого
Продромальный период Выражен Отсутствует или слабо выражен
Наследственность По аутосомно-доминантному типу; члены семьи из поколения в поколение страдают отеками гортани; есть случаи летальных исходов В 30-40% по восходящей или нисходящей линии отмечаются аллергические заболевания
Заболевание провоцируют Микротравма, ранение, операция и другие виды стресса Различные аллергены
Начало заболевания Отек формируется в течение нескольких часов Отек возникает на протяжении от нескольких минут до 1 ч
Крапивница Отсутствует Наблюдается часто
Локализация Чаще верхние дыхательные пути и желудочно-кишечный тракт Различная; в 25% случаев отек гортани
Картина отека Бледный, очень плотный, разлитой, распространяющийся на большой участок Величина и консистенция варьируют; цвет бледный, бледно-розовый. иногда синюшный
Течение заболевания Ремиссии больше года; часто непрерывные атаки Обострение заболевания зависит от контакта с аллергеном
Гормоны, антигистаминные препараты Неэффективны Эффективны
Инактиватор С1 Снижен, нормален, увеличен В норме
Компоненты комплемента С4, С2 Снижены В норме

В зависимости от характера заболевания и вовлекаемой в патологический процесс системы организма применяются специальные диагностические методы, проводимые в специализированных учреждениях. При непереносимости пищевых продуктов используют тест с введением в двенадцатиперстную кишку гистамина. При крапивнице информативны определение флюоресценции лимфоцитов с зондом 3-метокси-бензантроном, элиминационный тест и определение общего билирубина в сыворотке крови на фоне элиминационного теста. При анафилактоидных реакциях на прием лекарства ставят тест на выделение гистамина из лейкоцитов крови после добавления к ним in vitro исследуемого препарата. При бронхиальной астме добавление индометацина in vitro к взвеси лейкоцитов крови приводит к продукции лейкотриенов и гиперпродукции ПГЕ2? с высоким коэффициентом ПГF2? /ПГЕ2 только у больных с аспириновой астмой.

Лечение больных в остром периоде этиотропное и патогенетическое. Этиотропная направленность терапии заключается в предупреждении, прекращении и элиминации, насколько это возможно, действия вызвавшего заболевание фактора. При лекарственной П. дает эффект прекращение приема лекарственного препарата. При непереносимости ацетилсалициловой кислоты не рекомендуют употреблять производные пиразолона, нестероидные противовоспалительные препараты, пищевой краситель тартразин и все облатки желтого цвета, т. к в них входит тартразин. При пищевой П. необходимо выявление причинных продуктов или добавок к ним и исключение их из питания.

Патогенетическая терапия направлена на блокаду патохимической стадии развития П. При гистаминовом механизме лечение строится в зависимости от условий, ведущих к увеличению концентрации гистамина. Однако во всех случаях увеличения его концентрации показаны антигистаминные препараты, блокирующие действие гистамина на клетки-мишени. Если это увеличение связано с приемом пищи, то осуществляют коррекцию пищевого рациона, ограничивая или исключая продукты, обладающие гистаминосвобождающим действием или содержащие его и другие амины в больших количествах. Исключают продукты, вызывающие раздражающее действие, и рекомендуют овсяную кашу, рисовый отвар и др. или лекарственные препараты, обладающие обволакивающим действием. Ограничивают избыточное употребление углеводов, если они приводят к активации микрофлоры кишечника с декарбоксилирующей активностью. Одной из важнейших причин развития П. является дисбактериоз. Поэтому во всех случаях дисбактериоза необходима его коррекция. Освобождение гистамина, которому способствуют продукты питания, может быть блокировано пероральным приемом кромолин-натрия в большой дозе — 0,15-0,2 г за 1 ч до еды. В случаях снижения активности механизмов инактивации гистамина рекомендуют длительное подкожное введение в возрастающих дозах раствора гистамина. Этот способ лечения особенно эффективен при псевдоаллергической форме хронической крапивницы. Комплементарный механизм развития П. обычно сопровождается активацией протеолитических систем. Поэтому патогенетически обоснованным является использование ингибиторов протеолиза.

Лечение псевдоаллергического отека Квинке, в основе которого лежит дефицит С1-ингибитора, включает введение непосредственно С1-ингибитора или свежей плазмы и свежезамороженной плазмы, его содержащих, и ингибитора плазмина эпсилон-аминокапроновой кислоты, а затем препаратов тестостерона, стимулирующих синтез С1-ингибитора. Основным в лечении больных с нарушенным метаболизмом арахидоновой кислоты является предупреждение поступления в организм ацетилсалициловой кислоты и, как правило, всей группы ненаркотических анальгетиков, изменяющих ее метаболизм. Одновременно исключают употребление облаток желтого цвета и продуктов, содержащих тартразин. Необходимо рекомендовать больным элиминационную диету с исключением продуктов, содержащих салицилаты в качестве консервантов или в естественном виде (цитрусовые, яблоки, персики, абрикосы, черная смородина, вишня, крыжовник, томаты, картофель, огурцы и др.). Поскольку трудно исключить из питания многие из указанных овощей, фруктов и ягод и с учетом того, что чувствительность к салицилатам у разных больных весьма различна, можно рекомендовать не полное исключение, а ограничение той или иной степени употребления указанных продуктов. Повышенная чувствительность к салицилатам сопровождается также усиленным освобождения гистамина. Поэтому в остром состоянии можно назначать антигистаминовые препараты и кромолин-натрий. Больным астмой кромолин-натрий назначают в виде инъекций, а при пищевой П. — перорально. В тяжелых случаях больным дают кортикостероиды, которые тормозят активность фосфолипазы и тем самым блокируют освобождение арахидоновой кислоты. Патогенетически обосновано и назначение антагонистов кальция, т.к. активация фосфолипазы А2 происходит за счет увеличения содержания свободного кальция в клетках. Больным с аспириновой астмой проводят курс гипосенсибилизации возрастающими дозами ацетилсалициловой кислоты. В случае клинических проявлений П. (патофизиологическая стадия назначают соответствующее симптоматическое лечение.

Прогноз определяется характером патогенетических механизмов П. и выраженностью возникших нарушений. Он благоприятен в легких случаях при исключении факторов, вызывающих развитие П., опасен при развитии анафилактоидного шока. При пищевой П., развивающейся на фоне заболевания органов пищеварения, прогноз определяется успехом лечения основного заболевания.

Профилактика сводится к исключению факторов, вызывающих развитие П. Следует избегать полипрагмазии при лечении больного. Перед назначением лекарственного препарата необходимо расспросить больного о переносимости данного лекарства и группы родственных препаратов. При подозрении на П., как правило, заменяют вызывающий реакцию препарат на препарат другой группы. Перед введением рентгеноконтрастных веществ рекомендуется назначение антигистаминных препаратов, а больным, у которых в анамнезе были реакции на эти препараты, назначают профилактический кратковременный курс лечения кортикостероидами. Профилактика пищевой П. сводится к подбору соответствующей элиминационной диеты и лечению основного заболевания органов пищеварения.

Ферментные средства и ингибиторы ферментов

Содержание

Ферментные средства и ингибиторы ферментов [ править | править код ]

Ферментные средства — это лекарственные средства, содержащие ферменты — высокомолекулярные термолабильные белки, которые выполняют в организме роль биологических катализаторов в реакциях обмена веществ. Читайте также: Ферменты в бодибилдинге.

Классификация ферментных средств

1. Пептидазы: ацидин-пепсин, пепсидил, сок желудочный натуральный.

2. Протеазы: трипсин кристаллический, химотрипсин, химопсин.

3. Нуклеазы: рибонуклеаза, дезоксирибонуклеаза.

4. Фибринолитические ферменты: стрептолиаза, альте плаза (актилизе), фибринолизин.

5. Гиалуронидазы: лидаза, ронидаза, коллагеназа.

7. Другие ферментные средства: аспарагиназа, пенициллиназа, цитохром С.

К числу ферментных препаратов пептидаз относят пепсин — препарат, который содержит протеолитический фермент, получаемый из слизистой желудка свиней, и обладает способностью расщеплять белки до полипептидов.

Показания к применению: заместительная терапия при ахилии, гипо- и анацидные гастриты, диспепсии.

Входит в состав препаратов ацидин-пепсин, содержащий также бетаин, высвобождающий кислоту хлористоводородную. Содержится пепсин в составе сока желудочного натурального.

Панкреатин — ферментное средство из поджелудочных желез скота, содержит липазу, протеазу, амилазу. Форма выпуска: драже. Назначают по 1—3 драже перед едой.

Показания к применению: заместительная терапия, ахилия, недостаточная функция поджелудочной железы, анацидные гастриты, диспепсии, энтероколит.

Побочные эффекты: обострение подагры.

Фестал содержит три пищеварительных фермента (липазу, амилазу, протеазу), кроме того, желчные кислоты, которые улучшают переваривание жиров, стимулируют желчевыделительную и желчеобразовательную функции печени, повышают проницаемость клеточных мембран. Гемицеллюлоза, также присутствующая в препарате, улучшает моторную функцию желудка и кишечника, связывает токсические продукты жизнедеятельности кишечных бактерий. Фестал следует признать одним из самых удачных ферментных комбинированных препаратов, улучшающих пищеварение. Принимают фестал по 1—3 драже во время или сразу после еды. Количество приемов препарата зависит от количества приемов пищи.

Подобные сочетания имеются в энзистале, дигестале, мезим форте и др., существуют также препараты с улучшенной фармакокинетикой (креон, панкреаль Киршнера, панзинорм).

Помимо упомянутых, известны и другие комбинированные препараты, содержащие пищеварительные ферменты, например, препарат растительного происхождения солизим.

В медицинской практике пищеварительные ферменты применяют у лиц с недостаточной желудочной секрецией, с недостаточной функцией поджелудочной железы, с расстройствами пищеварения, атрофическими гастритами, хроническими колитами, расстройствами питания. Лицам с повышенной желудочной секрецией (при повышенной кислотности) пищеварительные ферменты противопоказаны, так как могут усугубить расстройства, связанные с повышенной агрессивностью желудочного сока. Кроме того препарат противопоказан при нарушениях связанных с оттоком желчи (ДЖВП гипокинетического типа).

Трипсин кристаллический разрывает пептидные связи в молекуле белка, расщепляя продукты распада белков, некротические ткани, а также нити фибрина. В живой ткани содержатся ингибиторы фермента трипсина. После внутримышечного введения действие развивается через 25—30 мин. Препарат оказывает отхаркивающее, противовоспалительное действие, улучшает микроциркуляцию, опосредованно оказывает противомикробное и иммуномодулирующее влияние.

Показания к применению: воспалительные заболевания дыхательных путей (как разжижающее мокроту), тромбофлебит, остеомиелит, гайморит, отит, ожоги, пролежни.

Побочные эффекты: боль при введении в мышцу, гиперемия, аллергия, тахикардия.

Подобный эффект наблюдается у химотрипсина, рибонуклеазы, дезоксирибонуклеазы.

Лидаза. В состав препарата входит гиалуро-нидаза, которая деполимеризирует гиалуроновую кислоту, уменьшая ее вязкость, вызывает увеличение проницаемости ткани. Однако следует учитывать, что действие препарата является обратимым.

Фармакокинетика: начало действия через 1—2 ч, период полувыведения — 20—24 ч. i- Показания к применению: контрактуры суставов, рубцы после ожогов и операций, гематомы.

Побочные эффекты: аллергические реакции.

(Сведения о ферментных препаратах см. в соответствующих разделах.)

Особое место занимают ферментные средства системной терапии: вобензим, флогензим.

Вобензим содержит папаин, бромелайн, липазу, амилазу, трипсин, химотрипсин, поэтому обладает противовоспалительным, противоотечным, фибринолитическим, иммуномодулируюшим, вторичным обезболивающим действием, улучшает микроциркуляцию, реологические свойства крови, кровоснабжение, оксигенацию тканей, проявляет гиполипидемическое, иммунокорри-гирующее, антиоксидантное действие, влияет на факторы риска развития реинфарктов.

Показания к применению: синуит, бронхит, пневмония, панкреатит, неспецифический язвенный колит, болезнь Крона, рассеянный склероз, тромбофлебит, воспалительные процессы после хирургических вмешательств, гинекологические и урологические заболевания, травмы.

Побочные эффекты: аллергические реакции, изменение консистенции и запаха кала.

Флогензим содержит трипсин, бромелаин, реутозид. Основные эффекты: противовоспалительный, противоотечный, способствует уменьшению болевых ощущений, снижает вязкость крови, предотвращает тромбообразование, улучшает микроциркуляцию.

Показания к применению: острые воспалительные процессы, обострение хронических воспалительных заболеваний, ожоги, травмы, послеоперационное воспаление и отек, ревматический миозит, тендинит, воспалительно-дистрофические заболевания суставов в фазе обострения.

Побочные эффекты: аллергические реакции, чувство переполнения желудка, метеоризм.

Применение препаратов пищеварительных ферментов в спортивной медицине и в практике спортивной подготовки [ править | править код ]

При высоких физических нагрузках организм требует достаточно большого притока пластического и энергетического материала извне. Пищеварительный аппарат не всегда справляется с этой задачей. Недостаточная переваривающая способность желудочно-кишечного тракта может служить фактором, лимитирующим прирост мышечной массы и работоспособности вследствие относительного белкового и витаминного дефицита. Для коррекции пищеварительных процессов применяют комбинированные средства, содержащие пищеварительные ферменты. Прием таких препаратов существенно улучшает пищеварение и способствует приросту массы тела. Пищеварительные ферменты могут приниматься как самостоятельно, так и в комплексе с анаболическими средствами.

Применение препаратов системной энзимотерапии в спортивной медицине и в практике спортивной подготовки [ править | править код ]

Занятия спортом, как известно, сопряжены с большими физическими нагрузками. Несоответствия между индивидуальными способностями тканей двигательного аппарата к нагрузкам и фактической нагрузкой при тренировке или соревнованиях создают условия для возникновения различных травматических повреждений. Использование препаратов системной энзимотерапии позволяет выдерживать тренировочные нагрузки повышенного объема и интенсивности, при этом прием вобензима позволяет избежать срыва адаптационных механизмов, истощения иммунной системы и дистресса. Вобензим в дозе 10 драже 3 раза в день обладает выраженным иммуностимулирующим действием. При этом, по данным контрольных тестов, существенно повышается уровень спортивной работоспособности. Применение вобензима в спорте увеличивает адаптационные резервы и освоение околопредельных стрессовых нагрузок, а также способствует более быстрому восстановлению, что подтверждается биохимическими и психофункциональными тестами. Эффект последействия после месячного курса системной энзимотерапии сохраняется в течение 10—14 дней.

Как известно, границы спортивной работоспособности определяются не только состоянием сердечно-сосудистой и дыхательной систем, но и способностью тканей опорно-двигательного аппарата к перенесению нагрузок. Повреждения мышц относятся к числу наиболее частых в спортивной медицине травм. Особую проблему составляют микротравмы, часто недооцениваемые спортсменами и их тренерами. В последующем это приводит к длительным периодам потери трудоспособности. В настоящее время нет единой точки зрения на лечение мышечных повреждений. Общепринятой является местная терапия (холод, покой) и приподнятое положение пораженного сегмента конечности. Нередко назначают аналгетики и нестероидные противовоспалительные препараты, имеющие, как известно, ряд побочных эффектов. С учетом патоморфологи-ческих изменений, возникающих в мышцах, целесообразно использовать системную энзимоте-рапию как для профилактики, так и для лечения травматических повреждений мышц у спортсменов. Вобензим назначают в дозе 10 драже 3 раза в день от 10—14 дней до 4—6 нед. Прием вобензима спортсменами в таких дозах, по данным многочисленных исследований, позволяет приступить к спортивным тренировкам в среднем в 2—2,5 раза быстрее по сравнению с проведением традиционной терапии. Можно также использовать флогензим и Вобе-Мугос.

Ингибиторы ферментов [ править | править код ]

Лекарственные препараты, применяемые с целью подавления активности ферментов, называются ингибиторами ферментов.

1. Ингибиторы протеиназ: контрикал.

2. Ингибиторы фибринолиза: кислота амино-капроновая.

3. Антихолинэстеразные средства: прозерин, физостигмина салицилат, галантамина гидробромид и др.

4. Ингибиторы МАО: ниаламид.

5. Ингибиторы карбоангидразы: диакарб.

6. Ингибиторы ксантиноксидазы: аллопуринол.

7. Ингибиторы ацетальдегидрогеназы: циамид, тетурам (дисульфирам) и др.

Контрикал — антиферментный препарат, ингибирующий активность трипсина, калликреина, плазмина.

Фармакокинетика: при внутривенном введении действие развивается через 10—15 мин.

Показания к применению: острый панкреатит, панкреанекроз в сочетании с гепарином в острый период инфаркта миокарда.

Противопоказания: с осторожностью у лиц, склонных к аллергическим реакциям.

Побочные эффекты: аллергические реакции.

Активация протеаза сыворотки крови при анафилаксии

Bronfenbrenner (1948) указывал, что при анафилаксии активируется протеаза сыворотки крови, которая повреждает клетки и освобождает токсический пептон и другие активные биологические вещества. Этот автор (1948) и другие придавали значение в механизме активации протеолиза при анафилаксии процессам угнетения антитриптической активности сыворотки крови. В 1946 г. Rocha и Silva наблюдали активацию фибринолизина в сыворотке крови у собак при анафилактическом и пептонном шоке. Unger (1947) обнаружил появление фибринолизитического фермента после инкубации органов сенсибилизированной морской свинки с антигеном. Rocha и Silva с сотр. полагают, что активация протеолитических ферментов вызывает освобождение гистамина из тканей при анафилаксии; в течение первых 2—8 минут пептонного шока триптическая активность возрастает.

Damgaard и Ungar (1952) показали, что у морской свинки при анафилактическом и пептонном шоке в моче появляется фибринолитический фермент, чего не наблюдалось при гистаминном шоке. Недавно Hahn и Lange (1956) выделили из сыворотки крысы протеазу, которую они назвали анафилотоксином. Ungar развил гипотезу об анафилотоксине (1953) в следующем виде: реакция антитела с антигеном активирует серокиназу, что вызывает освобождение из профибринолизина фибринолизина. Этот фермент вызывает протеолиз, в результате которого образуются гистамин и полипептиды.

Наряду с протеолизом имеются данные о значительных нарушениях липолиза при анафилаксии. Havel и Boyle (1954), Inderbitzin (1955) обнаружили, что при анафилактическом шоке у собак в сыворотке крови определяется «липоантилипемический» фактор. Korn (1955) назвал его «липопротеиназа».

Этот фактор появляется в сыворотке крови также при пептонном шоке и при введении крупномолекулярных углеводов или полисульфоэстеров крупномолекулярных углеводов. Его появление вызывает также введение гликогена, эстеров хондриатинсерной кислоты, гепарина и др. Эти вещества одновременно способны активировать протеазы в сыворотке крови. Эта активация увеличивается при инкубации с сывороткой в течение некоторого времени. Липолитический фактор освобождается из клеток при анафилактическом шоке. Предполагают, что с этим процессом можно связать гепаринемию. Вопрос об участии липолитического фермента в освобождении гистамина при анафилаксии не является решенным. Роль гистамина и других биологически активных продуктов при анафилаксии и других реакциях немедленного типа еще окончательно не установлена.

Участие этих веществ при анафилаксии освещено в работах Dragstedt (1941); Riley (1959), Speirs (1955). Dale (1953) обозначил как «аутофармакология» процесс освобождения веществ в тканях и в крови при анафилаксии. Сводка его работ приведена в специальном томе под его редакцией.

«Руководство по патологической физиологии»,
И.Р.Петров, А.М.Чернух

Протеолитические ферменты А. Протеазы растительного происхождения

В настоящее время для повышения коллоидной стойкости пива в основном используют протеолитические ферменты, предотвращающие белковые помутнения, а также ферменты, позволяющие получить глубоко выброженное пиво.

При использовании протеаз необходимо помнить, что при слишком глубоком расщеплении белков получается пустое пиво с плохой пенистостью, а также с измененным вкусом; при недостаточном же расщеплении белков брожение идет вяло, и дека почти не образуется.

Препараты микробного происхождения не могут гарантировать необходимую степень расщепления белков. Для этой цели используются растительные протеазы, в частности, папаин. Его получают из плодов дынного дерева Carica papaja. Такого рода препараты, но с различными названиями, выпускают многие западные фирмы.

На нашем рынке этот фермент известен под названием Коллупулин (фирма Qist-brocades) или Чилко (голландской фирмы Noarderi). Коллупулин — это продукт, содержащий цистеиновую протеазу, разрушающую протеины пива, которые связываются с ПФ и образуют холодное помутнение. Важно, что этот фермент не влияет на вкус и запах пива и не снижает его пеностойкость. Его расход может составлять от 1 до 5 г на 1 гл пива. Препарат добавляют либо в лагерные танки, либо вводят в трубопровод во время перекачки пива из бродильного аппарата в чан дображивания. Следует обратить внимание на то, что для эффективного действия фермента pH пива должен находиться в пределах от 4,1 до 4,5.

Разработан способ получения пива с длительным сроком хранения, который основан на применении протеолитического фермента коллагеназы. Этот препарат по своим свойствам не уступает папаину (В. Тихонов, 1993).

Б. Бактериальные протеазы

Из отечественных ферментных препаратов, содержащих протеазы, для стабилизации коллоидов пива известен отечественный бактериальный ферментный препарат протосубтилин Г10Х. Кроме того, для получения пива с высокой степенью сбраживания применяют грибной препарат Амилоризин П10Х. Отмечается, что протеолитическая способность протосубтилина выше, чем у импортных препаратов, но стабилизирующая активность выше у последних.

Отмечено, что иногда при использовании ферментных препаратов пиво в процессе хранения приобретает привкус, несвойственный свежему продукту (например, хлебный). Особенно это ощущается в светлом пиве. В связи с этим следует обращать внимание на термостабильность ферментов, так как термостабильные ферменты могут остаться в пиве даже после пастеризации и изменять химический состав пива во время хранения. Так, амилоризин и глюкоамилазы фирмы Rapidase (Франция) термостабильны, а растительные ферменты и протосубтилин — термолабильны.

Из импортных ферментов предлагается бактериальная протеаза Brewers Protease фирмы ЕНР, получаемая из Bacillus subtilis. Этот фермент увеличивает содержание аминного азота, т. е. это экзопротеаза, в то время как для повышения коллоидной стойкости пива важнее действие эндопептидаз, уменьшающих молекулярную массу высокомолекулярных белков (ВМБ). Влияние фермента на стойкость пива может быть опосредованным, так как при высоком содержании аминного азота в сусле процесс главного брожения интенсифицируется, в результате чего в пенном слое будут образовываться комплексы типа белок-белок. Фермент рекомендуется вносить в затор из расчета 0,4-2,0 кг на 1 т зерна (ячменя). Максимальная активность фермента проявляется при температуре 45-50 °С, он инактивируется при 85 °С в течение 10 мин. Стабильная активность препарата наблюдается при pH = 5,5-8,5.

Для повышения степени сбраживания сусла и улучшения его фильтрации используются другие бактериальные ферменты, например, комплексный ферментный препарат Церимикс, в состав которого входят α-амилаза, ß-глюканаза и протеазы. Кроме того, для этой цели могут использоваться Фунгамил, Целлюкласт и многие другие (раздел 8).

Силикагели

Одной из причин возникновения помутнения пива является содержание в нем комплексов типа белок-полифенолы, белок-белок, белок-нуклеиновые кислоты. Для предотвращения их образования используют силикагели, которые получают из аморфного кремнезема. На рынке можно встретить также специальные силикагели, обладающие высокой адсорбционной способностью. Это КиГель-продукты и Кизель-гели. Все эти препараты избирательно адсорбируют белки и одновременно с этим частично удаляются ПФ, которые входят в белково-дубильные комплексы (табл. 11.8).

Таблица. 11.8 Влияние концентрации силикагеля на содержание в пива белков и полифенолоа

Доза силикагеля, г/гл Содержание компонентов, мг/л
Проантоцианидины Катехин Азот, осаждаемый MgSО4
10,3 7,8
9,1 7,8
7,7 8,6
9,5 7,7

Важными параметрами силикагеля с точки зрения стабилизации пива являются поверхность, диаметр пор, объем пор (рис. 11.3), распределение величин фракций, значение pH раствора силикагеля в воде, структура, чистота, содержание воды, диспергирующая способность (табл. 11.9). Несомненное преимущество данных стабилизирующих средств — простота их применения.

Таблица 11.9 Физические параметры силикагелей, предназначенных для стабилизации пива

Параметр Значение
Поверхность 300 1000 м 2 /г
Диаметр пор 30-120 А*
Объем пор 0,4-1,6 мл/г
Величина фракции 5-20 мкм**
Массовая доля сухих веществ 30-99 %
pH 5% водного раствора 4-8

Установлено, что применение силикагелевых препаратов не только не оказывает отрицательного влияния на вкусовые качества пива, но даже улучшает их, так как в процессе взаимодействия с силикагелем из пива удаляются многие вещества, которые отрицательно сказываются на вкусовом восприятии пива.

Иногда отмечается негативное влияние силикагеля на процесс пенообразования. Это связано с тем, что пиво с высокой степенью очистки обладает недостаточным количеством пенообразующих белков. Для избегания этого необходимо строго контролировать диаметр пор, чтобы не удалялись пенообразующие белки с молекулярной массой 10 000-50 000 D (рис. 11.4).

В настоящее время на основе кремния выпускают следующие препараты: ксерогели, гидрогели, гидротизированный силикагель (табл. 11.9).

Ксерогели

Ксерогели представляют собой тонкоразмолотый сухой продукт с массовой долей сухих веществ 95-99% (табл. 11.10). Он имеет площадь поверхности контакта фаз около 466 м 2 Д (Lucilite PC около 800 м 2 /кт), объем пор 1-1,2 мл/г, диаметр пор в основном 5-14 нм (BG-6 — 14 нм). Недостатком ксерогелей является их мелкодисперсность, что может снижать пропускную способность фильтра

Таблица 11.10 Технологическая характеристика силикагелей и кизельгелей (по данным фирм-изготовителей)

Препарат Торговая марка Массовая доля СВ, % Примечание
Ксерогель Lucilite PC
Stabifix
Stabiquick-Sedi Состоит из ксерогеля и бентонита натрия. В процессе перекачки пива из бродильного в лагерный, одновременно осаждение дрожжей
Daraclar915 Более 98,5 На стадии фильтрования пива
Daraclar 7500 Более 99 При фильтровании пива. В бродильно-лагерные танки
SiL-PROOFBG-6 95-98 Возможно использовать в комбинации с ПВПП
Кестросорб 3015 Более 65 Идентичен средним кизельгурам
Кестрисорб 1015 Более 90 Идентичен тонким кизельгурам
Stabifix W Во время кизельгуровой фильтрации
Гидрогель Кестрисорб 6015 Менее 50% Идентичен грубым кизельгурам
Lucilite В форфас, на стадии фильтрования пива
Daraclar 920 43-37 На стадии фильтрования пива
КиГель Меди При дображивании в лагерном отделении
КиГель Геро В процессе кизельгуровой фильтрации
SiL-PROOF BG-12H В форфас, во время кизельгуровой фильтрации

Гидрогели

Технология приготовления этого продукта точно такая же, как и у ксерогеля, однако в отличие от него массовая доля сухих веществ в гидрогеле составляет 35-43% (табл. 11.10). В результате во время применения этого препарата можно избежать образования пыли. Какими-либо другими качественными или экономическими преимуществами он не обладает.

Муковисцидоз: заместительная терапия ферментами

Г.В. Павлов, Н.В. Никитина
Научное издание, Екатеринбург, 2003

Многие разделы теоретической и практической медицины, в той или иной мере связанные с функционированием в норме и при патологии системы экзокринных органов и тканей, достигли в последние десятилетия высокого уровня развития. Итогом усиления интереса теоретиков и практиков к закономерностям экзосекреции стало установление существенных деталей морфофункционального становления. В частности, обнаружилась ее интеграция с деятельностью достаточно известной эндокринной системой организма, тем более что во многих железах (поджелудочная, слюнные, половые и др.) данные системы объединены не только функционально, но и морфологически.

Особенности формирования экзокринной системы в антенатальном периоде предопределяют не только множественные адаптационные реакции целостного организма, но и характер патогенеза экзокринных заболеваний взрослого человека, а также могут составить основу возможных нарушений обменных процессов. Достаточно упомянуть экзокринную систему желудочно-кишечного тракта, в столь значительной степени определяющей энергетический баланс организма, достаточное поступление пластических материалов и т.д. Под пищеварением понимается сложный процесс трансформации, и усвоения принятой пищи. В зависимости от происхождения ферментов пищеварение различается на три типа (собственное, симбионтное и аутолитическое), из которых собственное определяется экскреторной деятельностью желудочно-кишечного тракта и является основным типом у высших животных [19]. Синтез ферментов, необходимых для собственного пищеварения осуществляется эпителиальными клетками, слюнными железами, поджелудочной и железами кишечника.

Степень выраженности, как резервных возможностей, так и способности противостоять патологическому влиянию экзокринных желез и системы в целом определяется генетическими факторами и обстоятельствами, влияющими на дальнейшее развитие. Расшифровка причины такой универсальной зкзокринопатии, как муковисцидоз (кистофиброз поджелудочной железы) проведенной в рамках глобальной программы «Геном человека», привела к установлению локализации и выделению в чистом виде не только самого гена, ответственного за формирование конечного продукта — секрета экзокринных клеток, но и белка, реализующего генетическую информацию. Тем самым была убедительно продемонстрирована генетическая детерминация и контроль экзосекреции.

Гораздо ранее была установлена роль экзогенных, алиментарных, инфекционных, токсических и пр. факторов, способствующих нарушению функционирования, как избирательных экзокринных желез, так и экзокринной системы в целом и приводящих к обратимым, острым, а порой и необратимым, хроническим процессам в отдельных экзокринных органах.

Однако сумма накопленных знаний в области изучения физиологии и патологии экзокринной системы позволяет говорить о том, что в ближайшее время предстоит выработка неких единых схем корригирующих воздействий. Естественно, этому должна предшествовать определенная работа по систематизации наших знаний в области внешней секреции.

С момента основополагающих фундаментальных работ по физиологии пищеварения была начата разработка прикладных проблем, в частности проблемы фармакологической компенсации недостаточной функции органов желудочно-кишечного тракта, особенно экзокринной части поджелудочной железы, поскольку надежды на ее стимуляцию не оправдались. Несмотря на все расширяющийся ассортимент ферментных препаратов для заместительной терапии, проблема коррекции экзокринной недостаточности поджелудочной железы и желез кишечника остается все еще нерешенной. Однако в последние годы данная проблема была продвинута благодаря внедрению в клинику нового поколения энзимных препаратов, одним из лучших из которых является Креон®. В данной работе мы представляем обзор литературы по заместительной терапии интестинальными энзимами, а также собственные данные клинической апробации препарата Креон у больных муковисцидозом.

1. Очерк эволюции развития экзокринной ткани

Для осуществления собственной жизнедеятельности любой клетки организма и тех задач, которые предъявляет к ней целостный организм, данная клетка должна поглощать некоторое множество различных веществ, включать их в свой метаболизм и выделять во внеклеточную среду для дальнейших превращений продукты анаболизма и(или) катаболизма. В любом случае процессу выведения этих продуктов, названному экструзией [англ. extrusion выталкивание, выдавливание (Совр. словарь иностранных слов, 1992)], предшествуют вполне определенные процессы. Однако согласно традиции мы не будем отступать от терминологии, основанной на латинских корнях, и будем использовать термин секреция (secretio отделение), означающий процесс образования и выделения специализированными железами организма человека и животных особых активных веществ. При этом подразумевается, что продукт, выработанный железой, через выводной проток попадает в какую-либо полость организма или на его поверхность называется секрет, а выработанный железой, не имеющей выводного протока, а также некоторыми тканями, попадает прямо в кровь или лимфу называется инкрет.

Для того чтобы ответить на вопрос, в чем общность и различие секреции и инкреции необходимо рассмотреть вопрос формирования экзо- и эндокринной секреции в ходе эволюции.

Согласно теории А.М. Уголева [18, 19] секреция как таковая возникла из неспецифической экскреции, которая существовала на самых ранних стадиях эволюции живого как один из общих элементов обмена веществ между вне- и внутриклеточными средами. Необходимым условием такого обмена должна была быть возможность удаления клеткой продуктов метаболизма, т.е. экскреция. Реализация этого привела к тому, что наряду с продуктами катаболизма из клетки выделяются во внешнюю среду или интерклеточное пространство некоторое большее или меньшее количество биологически активных молекул (энзимов, гормонов, витаминов, медиаторов). На основе этой «потери» полезного материала при соответствующих условиях и происходит формирование секреторного процесса. С точки зрения полезности ход эволюции закрепил повышенное содержание в составе секретов и инкретов достаточно специфичных продуктов метаболизма клетки, необходимых для реализации соответствующих функций особых множеств клеток, ставших в дальнейшем соответствующими органами. Например, ряд клеток стали вырабатывать пищеварительные ферменты, в то время как концентрация других веществ либо уменьшалась, либо оставалась на прежнем уровне.

Качественно новым и весьма важным приобретением в процессе эволюции явилось появление способности железистых клеток — гладулоцитов — к запасанию в них некоторого количества секреторного продукта в форме секреторных гранул. Следовательно, у соответствующей клетки появилась возможность активно и незамедлительно выводить сколько-нибудь большое количество секрета в ответ на стимуляцию экструзии. Дальнейшая эволюция отшлифовала этот процесс, создав в клетке механизм одновременно и запасающей и транспортной функции: произошло образование аппарата Гольджи в виде широко развитой сети плотно упакованных и сплющенных цистерн, каждая из которых вобрала в себя различные наборы ферментов и т.п. Таким образом, во-первых клетка обезопасила себя от нежелательного воздействия синтезируемых ею биологически весьма активных веществ. Во-вторых, дифференпировка аппарата Гольджи дала возможность для созревания и депонирования секрета. И в третьих, возникновение избыточного продукта подвергалось уничтожению в аппарате Гольджи ради придания более или менее стабильного уровня секреторного процесса.

Таким образом постепенно образовалась цепочка процессинга (метаболизма) внешнесекреторного продукта, при котором был задействован основополагающий принцип обратной связи. Существует общая закономерность прогрессивной эволюции (олигомеризация), согласно которой происходит консолидация однородных рассеянных клеток и их скоплений. Это положение в полной мере относится и к эволюции экзокринных желез [2].

У высших животных произошло разделение желез на экзо- и эндокринные, причем достаточно резко, в отличие от низших. С другой стороны, наряду с процессами консолидации разрозненных однородных клеток, происходит и объединение этих клеток в один орган — ассоциация. Так произошло с половыми железами, поджелудочной, слюнными и др. Такое образование достаточно компактных желез, объединяющих в единое целое экзо- и эндокринные части, создает предпосылки для больших вариаций тонкой местной регуляции процессов секреции экзокринных частей этих органов, в том числе с помощью паракринной секреции.

Эволюция экзогенной регуляции связана с эволюционными изменениями как нервной, так и эндокринной систем, с одной стороны, и рецепторных аппаратов клеток — с другой. Л.Г. Лейбсон [12] предложил гипотезу о происхождении и эволюции рецепторов клеток, согласно которой особые специфические белковые соединения, входящие в липидный бислой плазматических мембран и других компонентов клеток, ставших в дальнейшем играть роль рецепторов, возникли не зависимо от появления гормонов. Рецепторные белки первоначально могли играть не рецепторную роль, а регулировать комплекс физико-химических процессов в клетке. Весь ход эволюции с появлением мутации изменили как сами рецепторы, так и гормоны и возникла их способность связываться друг с другом. Таким образом, гормоны стали стимуляторами для выполнения рецепторами их регуляторных функций.

Чаще всего гормоны характеризуются как вещества, действующие на отдаленные места своей выработки — мишени, к которым они приносятся кровью — телекринная секреция. Весьма трудно провести грань между типами инкреции, но принято отличать паракринную секрецию, при которой биологичекий эффект достигается путем местной диффузии или аутокринную, при которой действующие начала влияют на секретирующие их клетки. И если эти типы секреции, а также экзосекреты являются синтезированными в клетке продуктами, которые после выделения во вне не становятся структурными компонентами окружающей ткани, то экскреты — это вещества, выделению которых не предшествуют процессы внутриклеточного синтеза, и по существу являющиеся продуктами катаболизма, а рекреты — выделенные клеткой неизмененные молекулы и ионы (Рис 1 ).

Рис 1. Классификация элиминируемого материала и виды секреции

В свою очередь секретирующие клетки различаются по типам. В тех случаях, когда завершение процесса секреции сопровождается разрушением клетки, т.е. вся клетка в конечном итоге превращается в аморфный секрет, принято говорить о голокриновой секреции. Для организма человека это очень редкий тип секреции. Несколько более часто встречается апокриновый тип, когда выделение конечного продукта сопровождается отделением апикальной части клетки. Такой тип секреции, в частности, характерен для потовых желез, локализованных в подмышечных впадинах и в промежности. Наиболее часто в организме имеет место мерокриновый тип, при котором отделения частей клетки вместе с секретом не происходит. Это определяет то обстоятельство, что при мерокриновой секреции процессы синтеза и регенерации происходят достаточно плавно, параллельно и непрерывно.

Итак, классические представления цитологии рисуют картину, согласно которой секреторные белки синтезируются в соответствии с генетической информационной программой клетки, передающейся через РНК от ДНК, на рибосомах, расположенных на мембранах так называемого гранулярного эндогогазматического ретикулума (ГЭР). Образующийся предшественник белка претерпевает соответствующие изменения одновременно с перемещением к месту своей реализации. В частности, первоначально предшественник белка перемещается во внутрь каналов или цистерн ГЭР, где он подвергается некоторым преобразованиям, и затем транспортируется к цистернам и мембранам аппарата Гольджи. В комплексе Гольджи происходит накопление секреторного белка в конденсирующих вакуолях, которые постепенно уплотняются и преобразуются в зрелые секреторные гранулы, подлежащие экструзии путем экзоцитоза. Обычно этот процесс от начала синтеза до выделения готового продукта занимает в среднем 1 — 1,5 часа. На скорость выделения образовавшегося секрета влияют скорость слияния мембран секреторных гранул с плазматической мембраной клетки, концентрационный градиент (концентрация веществ внутри клеток и в просветах ацинусов и протоков).

Важно подчеркнуть, что, вероятнее всего, сам гландулоцит способен избирать разные пути оформления и выведения секрета в зависимости от типа и вида раздражителя, его дозы и длительности воздействия. К тому же и все железистые клетки отличаются друг от друга по характеру вырабатываемых субстратов белковых, мукополисахаридных, водно-солевых. Все это находит отражение и в морфологическом строении гландулоцитов. Однако описание этих отличий уже выходит за рамки данного очерка.

2. Механизмы экзосекреции

Таким образом, при всех структурных и функциональных различиях все секретирующие клетки имеют общее происхождение, механизмы образования и внутриклеточной транспортировки секрета. Природа достаточно консервативна, что применительно к экзокринным железам и органам свидетельствует о единстве многих основополатающих механизмов. Следовательно, при кажущихся крайностях в жизнедеятельности экзокрикных желез между ними лежит практически весь спектр медицинских профессий — от педиатрии и терапии до урологии и гинекологии.

Во многих органах организма с точки зрения экзокринологии эпителий разделяется на преимущественно всасывательный, например кишечник, желчный пузырь и др., и секретирующий, например поджелудочная, слюнные и др. железы. С другой стороны, характер выделяемого секрета позволяет разделить железы внешней секреции на неслизеобразующие, состав конечного продукта которых состоит в основном из водноэлектролитного компонента (потовые, слезные, слюнные), и слизеобразующие, секрет которых кроме водноэлектролитного содержит и иной субстрат — белковый, мукопротеиновый, мукополисахаридный (поджелудочная, предстательная железы, железы эпителия респираторного гракта и др.).

Таким образом, вполне обосновано, и тому имеется множество доказательств, предположить сходство генеральных механизмов синтетических, транспортных и иных процессов в экзокринных opганах и тканях.

Хотя до настоящего времени еще нет полного представления о путях транспорта и выведения секрета из клеток, а специализация экзокринных клеток различна, тем не менее, установлены некоторые общие механизмы экзосекреции. Как известно, секреторный ответ возникает на внешний стимул «первичных мессенджеров» (посредников) — нейротрансмиттеров, гормонов, метаболитов или подавляющее действие каких-либо факторов. Секретогенные вещества, взаимодействуя с рецепторами мембран ацинарных клеток индуцируют два функционально различных пути стимуляции — через нервные и гормональные механизмы. Один из них включает активацию АЦ, которая выполняет роль вторичного мессенджера, расположенного на внутренней стороне мембраны, повышение уровня цАМФ в клетках и затем активацию цАМФ-зависимой от протеинкиназы — фермента, состоящего из двух регуляторных и двух каталитических субъединиц. Освобожденная каталитическая субъединица фосфорилирует белковый субстрат и вызывает усиление секреции [23].

Другой механизм действует через мобилизацию пула внутриклеточного кальция. Весьма значительную, если не главенствующую, роль в этом играет белок кальмодулин (КМ), имеющий четыре связи с кальцием, и за счет этих связей переходящий в активное состояние. Проникновение кальция в клетку может идти через АГФ-зависимые кальциевые насосы. При повышении концентрации кальция он связывается с Са 2+ КМ, и этот комплекс воздействует на Са-транспортирующий белок (носитель). Выходящий из клетки натрий может обмениваться на кальций, который входит в нее.

Результаты физиологических исследований показали, что в регуляции деятельности мукозных желез доминирует иннервация, имеющая холинергический и парасимпатический характер. Однако это отнюдь не исключает участия в секреции симпатических адренергических путей проведения нервных импульсов и, возможно, неадренргической нехолинергическои иннервации.

Секретогенными веществами, запускающими механизм повышения цАМФ являются секретин и вазоактивный интестинальный пептид (ВИЛ), а вызывающими мобилизацию клеточного кальция — хастрин и холецистокинин. И хотя начальные этапы инициации секреции различны, в последующих фазах они взаимодействуют и аддитивный окончательный эффект может быть большим, чем простая сумма двух взаимодействий Секреторная активность потовых, слюнных, слезных, бронхиальных и других эккриновых желез находится под влиянием не только адренергической и холинергической систем, но и иннервации пептидными волокнами.

Эффект стимуляции мукозных желез, аналогичный симпатической нервной, был получен in vitro при воздействии на железы агонистами α-адренорецепторов [11]. Гистологические исследования показали, что нервы, содержащие катехоламины, располагаются как между ацинусами, так и в самих ацинусах между гландулоцитами. Нервные волокна, содержащие мелкие зернистые пузырьки, по характеру своему являются адренергическими и у человека располагаются вблизи гландулоцитов. Кроме того, способностью ускорять железистую секрецию обладает и вазоактивный интестинальный пептид (ВИЛ) и, вероятно, так называемая субстанция Р. Все вышесказанное характеризует автономный контроль секреции слизи гландулоцитами.

Роль гормонов как мощных и универсальных регуляторов жизнедеятельности клетки изучена достаточно подробно. В частности, в последние годы было показано, что пролактин (ПЛ) регулирует резорбцию хлора в экзокринных железах [32]. Пролактин представлен в гранулах так называемой диффузной эпителиальной эндокринной системы (DEE) клеток секреторного кольца человеческих потовых клеток. Пептиды и другие гормоны, секретированные паракринно или аутокринно в клетках DEE участвуют в регуляции локальной клеточной активности [38]. Вероятно ПЛ модулирует концентрацию хлора в секрете через реабсорбцию соли в протоках на люминальной мембране. Кроме того, ПЛ может ингибировать активность фосфолипазы А2 и освобождение арахидоновой кислоты.

Гораздо менее исследовано влияние некоторых других медиаторов. В частности, экспериментально установлено, что ацинарные клетки имеют рецепторы к простагландинам и Pg-опосредованный эффект реализуется в подавлении ферментообразования экзокринными клетками [33].

Образование секрета складывается из двух процессов секреции электролитов, выраженных однако в различных железах в неодинаковой степени. Например, изотонический, богатый Сl — секрет ацинарных клеток поджелудочной железы, стимулированный ацетилхолином, холецистокинином, в разных пропорциях смешивается с изотоническим секретом, богатым НСО3, образующимся в эпителии протоков в ответ на секретин и ВИЛ.

Доля обогащенного Сl — секрета в общей секреции у человека невелика. В ответ на стимуляцию м-холинорецепторов и в меньшей степени а-адренорецепторов секрет ацинарных клеток поджелудочной железы по Сl — составу подобен плазме. Между тем, секреция опосредована переносчиками Na + / Сl — и Na + /H + или их эквивалентами. Это становится тем более понятно, если учесть, что движение ионов не есть самоцель, а необходимо для перемещения определенного, физиологически оправданного в данное время и при данных обстоятельствах, количества жидкости.

Законы термодинамики допускают не только чресклеточное, но и межклеточное перемещение жидкости. Однако ответ становится очевидным в пользу чресклеточного перемещения воды при самой постановке вопроса: могут ли быть соединительные межклеточные комплексы и структуры способны пропустить большое количество жидкости и не допустить при этом ощутимой для целостного организма потери выделяющихся ионов?

В свою очередь понимание единых механизмов секреции позволяет представить те механизмы полома, которые возникают при целом ряде патологических состояний и заболеваний, и на этой основе приступить к разработке и применению в практической деятельности ряда терапевтических комплексов.

2.1. Секреция поджелудочной железы

Одним из наиболее массивных экзокринных органов является поджелудочная железа, которая, кроме того, секретирует и ряд гормонов, в частности инсулин. Гормоны поджелудочной железы секретируются α-, β- и δ-клетками островков Лангерганса и в основном регулируют углеводный обмен в организме. Островки Лангерганса расположены среди клеток железистой паренхимы, составляющих основную массу железы.

У человека поджелудочная железа за сутки выделяет около 1,5-2 литров сока, что означает продукцию железой массой 80-100 г 20 мл на 1 г массы в сутки. Столь высокая производительность почти не имеет равных в организме человека. Панкреатический сок представляет собой сложное образование [бесцветная изоосмотичная плазме крови жидкость щелочной реакции (рН 7,8-8,4), без запаха и с удельным весом 1007-1009], которое достаточно условно можно разделить на два компонента. Во-первых, это его главная составляющая — органические вещества в основном белкового происхождения, наиболее важными из которых являются пищеварительные ферменты: протеазы, липаза, амилаза, в общей сложности до 12 ферментов. Из 6-8 пищеварительных ферментов, ежедневно выделяемых в желудочно-кишечный тракт человека, 4-5 г вырабатывается поджелудочной железой [13]. Во-вторых, это водоэлектролитный компонент, содержащий в числе прочих бикарбонаты, микроэлементы, а также слизь. Образование панкреатического секрета является суммой двух процессов секреции электролитов. Изотонический, богатый С1 — секрет, образующийся, по-видимому, в ацинарных клетках и высвобождающийся под действием ацетилхолина и холецистокинина-панкреозимина, в различных пропорциях смешивается с изотоническим секретом, богатым НСО3, который, вероятно, образуется в эпителии протоков в ответ на секретин и ВИЛ [14 с 16]. Доля обогащенного С1 — секрета ацинарных клеток в общей секреции у человека минимальна.

В постнатальном периоде поджелудочная железа начинает особенно интенсивно развиваться в периоде от 6 мес до 2 лет, что обусловлено качественным и количественным изменением питания. В ответ на введение секретина поджелудочная железа отвечает увеличением всех ферментов у детей старше 2-х лет. Однако развитие железы продолжается и в более старшем возрасте, что прослеживается морфологически в постепенном появлении бугристости и стирании границ между дольками.

Паренхима поджелудочной железы представляет собой отдельные трубчато-альвеолярные дольки, состоящие из эпителиальных клеток, секретирующих панкреатический сок. Структурная единица паренхимы железы — ацинус — состоит из 8-12 ацинарных клеток, нескольких центроацинарных клеток, межклеточных секреторных капилляров и внутридолькового протока. Ацинарные клетки поджелудочной железы имеют форму усеченного конуса с широким основанием и содержат 22% грубого шероховатого ретикулума, митохондрии составляют около 8%, зимогенные гранулы — 6,4% и конденсированные вакуоли — 0,7% [9]. В секреторных клетках различают исчерченный наружный пояс и внутренний зернистый. Таким образом, морфология секреторных клеток поджелудочной железы типична для клеток, вырабатывающих белковый секрет. Н.К. Пермяков и соавт. [13, с.49] выделяют пять фаз секреторного цикла, развертывающегося на определенных территориях клетки:

  1. поступление веществ (капилляры, базальные и цитоплазматические мембраны);
  2. синтез первичного секрета (рибосом, шероховатый ретикулум);
  3. созревание секрета (комплекс Гольджи);
  4. накопление секрета (околоядерная зона, апикальные отделы);
  5. выделение секрета (апикальные цитомембраны, тонофибриллы)

Экзокринный аппарат поджелудочной железы относится к железам с мерокриновой секрецией, при котором зрелые гранулы зимогена вступают в тесный контакт с апикальной мембраной клетки.

Образуемый ацинарными клетками сок гипотоничен, поэтому транспорт воды в просвет протоковой системы происходит пассивно, под влиянием осмотического давления, сок, вытекающий из Фатерова соска в кишку, изотоничен. Выводящие протоки железы, постепенно сливающиеся в основной выводной проток, выстланы кубическим эпителием. Кроме того, в слизистой оболочке протоков содержатся бокаловидные клетки, выделяющие слизь, а также клетки, вырабатывающие белковый секрет. И если главной функцией ацинарных клеток является синтез и секреция разнообразных пищеварительных ферментов, то функция клеток протоковой системы — это продукция секрета, богатой бикарбонатами жидкости, необходимой для нейтрализации желудочной кислоты в кишечнике [9, с.49]

Нейрогуморальная и гормональная регуляция секреции поджелудочной железы происходит по дуодено-панкреатической оси по принципу обратной связи — универсального механизма многих висцеральных функций организма. Таковая регуляция внешнесекреторной секреции поджелудочной железы заключается в выделении под влиянием соляной кислоты желудка клетками двенадцатиперстной кишки и верхних отделов тонкой кишки гормонов панкреозимина и секретина. Секретин стимулирует гидрогенетическую функцию, повышает общую секрецию и содержание бикарбонатов. Учитывая тесное взаимодействие секретина с желудочной кислотой, секретин действует наиболее эффективно натощак и в поздней фазе пищеварения, так как именно в это время в двенадцатиперстную кишку поступает наибольшее количество забуференной кислоты. Аналогичным действием на секрецию бикарбонатов, хотя и меньшей степени, чем секретин, обладает и ВИЛ. Панкреозимин обладает экболитическим действием: активизирует ферментообразовательную функцию ацинозных клеток. Холецистокинину приписывают самые разнообразные эффекты, включая трофическое влияние на поджелудочную железу и регуляцию аппетита, но наиболее точно установлена его роль как стимулятора секреция панкреатических ферментов [ 14, с. 16].

Бомбезин способен оказывать стимулирующее влияние на секрецию белка железой. С другой стороны тормозящим действием на экзосекрецию поджелудочной железы обладают панкреатический полипептид, соматостатин, энкефалин, нейротензин.

Амилолитическое действие поджелудочной железы обусловлено секрецией α- и β-амилазы, мальтазы, лактазы, инвертазы. Секреция амилазы у плода практически отсутствует. После рождения амилаза секретируется ферментативно активной и к возрасту 1 года ее уровень в двенадцатиперстной кишке составляет только половину уровня взрослого человека. При оптимуме ее действия при рН 6,7-7,0 амилаза расщепляет основные углеводные компоненты пищи — сахар и крахмал в двенадцатиперстной кишке и верхних отделах тонкого кишечника до моносахаров.

У новорожденных детей определяется низкий уровень активности панкреатической липазы, что является результатом ограниченного биосинтеза или сниженной секреции. Этот факт частично объясняет неполное всасывание липидов и частую стеаторею у детей раннего возраста. Однако к возрасту 1 года концентрация липазы резко увеличивается и превышает уровень взрослых в 2,5 раза. Липаза выделяется в неактивном состоянии, активируется желчными кислотами и действует в оптимуме рН 7,0-8,6. Кроме липазы липолитический комплекс панкреатического сока включает фосфолипазу А и холестеролэстеразу. Основное их физиологическое действие — расщепление нейтрального жира до глицерина и жирных кислот.

Протеазы панкреатического сока представлены целым рядом специализированных энзимов: трипсин, химотрипсин, комплекс эрипсина, карбопетидаза, карбонатная оксипептидаза, коллагеназа, эластаза и др. У новорожденных детей хорошая всасываемость и переваривание белков обеспечивается экзо- и эндопептидазами, тем более что уровень химотрипсина у них составляет 50-60% от уровня детей старше 2-х лет, карбопептидазы В — 15-20%, а трипсина — 90-100%. Протеолитические ферменты выделяются в кишечник в неактивном состоянии, что имеет большое биологическое значение поскольку амилаза и липаза представляют собой, как и все энзимы, белки. Вследствие этого присутствие их в одном растворе с протеазами могло бы привести к их разрушению еще в месте образования — в ацинусах поджелудочной железы. Протеолитические ферменты активируются в двенадцатиперстной кишке дуоденазой, энтерокиназой, обеспечивающими ощелачивание и расщепление кислой смеси протеозов, пептонов и частично неизмененного белка до пептидов и аминокислот.

Каждая ацинарная клетка поджелудочной железы способна производить все вырабатываемые железой энзимы. При этом используется универсальный принцип клеточного «конвейера», заключающегося во взаимозаменяемости отдельных клеточных элементов. Этому способствует асинхронная деятельность ацинарных клеток в пределах одного ацинуса и группы ацинусов [48, с 49].

Поджелудочная железа обладает хорошими компенсаторными возможностями. Достаточно сказать, что для полного переваривания жиров достаточно 2/3 паренхимы железы, белков — 1/2, углеводов — 1/10, а для достаточного переваривания — значительно меньшей части ее. Основные клинические проявления экскреторной недостаточности поджелудочной железы (стеаторея и креаторея) возникают при дефиците протеаз и липазы более 90%.

Практикующему врачу нередко приходится иметь дело с патологией экзокринной части поджелудочной железы. Причем недостаточность внешнесекреторной функции может быть первичной или вторичной. Наиболее выраженным проявлением экзокринной недостаточности поджелудочной железы является уменьшение или полное отсутствие секреции ферментов, а также такое нарушение реологии секрета, при котором при нормальном синтезе пищеварительных энзимов вследствие диспории они не достигают места своей реализации. Вследствие этого изменяется процесс пищеварения и нарушается нормальное усвоение питательных веществ.

2.2. Энтеральная секреция

Отвечая задачам переваривания и всасывания пищи, слизистая оболочка кишечника обладает целым набором специализированных клеток, имеющих несомненные признаки экзокринной секреции. Вообще говоря, о слизистой оболочке, трудно провести грань между собственно экзокринными клетками и железами и клетками, не имеющими таковых признаков.

В слизистой двенадцатиперстной кишки пищеварительный сок вырабатывается трубчато-апинозными бруннеровскими железами. Бруннеровские железы выделяют густую бесцветную жидкость слабощелочной реакции, содержащую муцин и пепсиноподобный ферменг, активирующийся соляной кислотой. Кроме того, обволакивая слизистую двенадцатиперстной кишки густым секретом, сок бруннеровских желез выполняет защитную роль.

Слизистая оболочка кишечника густо покрыта ворсинками, между которыми располагаются кишечные (либеркюновы) железы или крипты, вырабатывающие кишечный сок. На дне либеркюновых желез находятся панетовские клетки, в цитоплазме которых содержатся секреторные гранулы. В отличие от взрослых, у детей железы Панета содержатся не только в тонкой, но и в толстой кишке. Кишечный сок содержит большое количество пищеварительных ферментов и мукопротеины. В криптах толстой кишки содержатся бокаловидные клетки, продуцирующие необходимую для увлажнения слизистой оболочки и образования кала слизь.

Согласно экскреторной теории А.М. Уголева [19] внеклеточное пищеварение делится на полостное, или дистантное, и пристеночное, или контактное. Секреция желез желудочно-кишечного тракта обеспечивает, прежде всего, полостное пищеварение, а образование ферментного слоя на апикальных мембранах энтероцитов можно представить как эволюцию морфостатической экскреции. Пристеночное пищеварение осуществляется собственно кишечными ферментами, фиксированными на мембранах микроворсинок. Данный тип пищеварения наиболее характерен для тонкого кишечника. Над апикальными мембранами энтероцитов расположена зона гликокаликса, образованная мукополисахаридными нитями. Наличие кишечных ферментов в гликокаликсе увеличивает поверхность пристеночного пищеварения. Над гликокаликсом расположен непрерывно сменяемый слой слизи, также являющийся продуктом секреции и богатый ферментами.

Сложность регуляции внешнесекреторной деятельности кишечника в полной мере соответствует многообразием секретируемых ею веществ. Состояние транспорта жидкости регулируется содержанием внутриклеточного кальция в цитозоле энтероцитов.

Существенное влияние на секрецию оказывают уровни паракринных инкретов (гормонов) желудочно-кишечного тракта. Так, гастральный ингибирующий пептид, энтероглюкагон и ВИЛ усиливают секрецию тонкой кишки. Из найденных в экстрактах кишки факторах, не идентифицированных как гормоны, дуокринин и энтерокринин обладают стимулирующимм эффектом, в частности на бруннеровы железы.

Спектр заболеваний слизистой кишечника, протекающих с поражением секретирующих желез, весьма обширен. А. В. Фролькис [22] весь комплекс тонкокишечных расстройств, все его интестиналъные и экстраинтестинальные проявления, предлагает обозначать термином «энтеральная недостаточность». Тех, кого интересуют вопросы патологии тонкой кишки, мы отсылаем к монографии автора с аналогичным названием. В рамках данного издания скажем только, что практически вся патология кишечника нуждается в той или иной степени в заместительной терапии ферментами.

3. Показания к заместительной терапии ферментами. Oсложнения

Показаниям для заместительной ферментной терапии являются заболевания, протекающие с полной или частичной недостаточностью поджелудочной железы и желез кишечника [4, 24, 34] (Табл.1.)

Представления о возможном снижении функциональной активности поджелудочной железы при длительном приеме энзимных препаратов, иногда распространенные как среди пациентов, так и среди врачей, не имеют под собой никакой научной основы и потому выдерживают критики. Напротив, преждевременное прекращение препарата может устранить достигнутый терапевтический эффект, поэтому симптомы болезни возобновляются [4].

Другая возможная ошибка, подстерегающая интерниста, назначающего заместительную терапию ферментами, заключается в выборе дозы препарата. В самом общем виде рекомендацию относительно дозировки энзимов можно сформулировать следующим образом: доза препарата должна выбираться строго индивидуально, сообразно степени зкзокринной недостаточности пищеварительного тракта у конкретного больного под контролем клинических и параклинических признаков. И, тем не менее, рекомендуемая средняя доза назначается из расчета 8000-10000 FIP.u. липазы/кг массы тела (об активности ферментов в препаратах см. ниже).

Таблица 1 . Показания для заместительной ферментативной терапии

Общий дефицит ферментов
  • Хронический панкреатит
  • Острый панкреатит
  • Карцинома с обструкцией протока поджелудочной железы
  • Резекция поджелудочной железы
  • Травма поджелудочной железы
  • Муковисцидоз
  • Цирроз печени и синдром билиарной недостаточности (снижение дебита и изменение состава желчных кислот)
  • Первичный склерозирующий холангит
  • Квашиоркор
  • Синдром Швахмата
  • Фиброзный поликистоз
  • Ваготомия
  • Резекция желудка
  • Демпинг-синдром
Изолированный дефицит ферментов
  • Дефицит липазы
  • Дефицит протеаз
  • Дефицит амилазы
Недостаточная активация ферментов
  • Недостаточность энтерокиназы

Длительное применение заместительной терапии ферментами, особенно в высоких дозах в ряде случаев может приводить к осложнениям. Наиболее серьезным является стриктура толстой кишки [29]. Причина развития стриктуры заключается в длительном использовании высокоактивных средств с содержанием липазы свыше 20000 FEP.u. При этом избыток ферментов неблагоприятным образом воздействует на слизистую толстого кишечника, приводя к стойким морфологическим изменениям. Справедливости ради следует сказать, что современное поколение ферментов типа Креон® лишено данного осложнения.

Другим осложнением, также связанным с высокой дозой ферментов, является развитие гиперурикоземии и в связи с этим проявления артроиатии [31]. Данное осложнение также не отмечается при назначении новейшей генерации ферментных препаратов.

4. Характеристика энзимных препаратов

История заместительной энзимной терапии официнальными препаратами началась с применения экстракта поджелудочной железы (панкреатина) в виде порошка. При этом сразу обнаружились недостатки, низкая эффективность вследствие инактивации энзимов кислым желудочным соком, необходимость использования высоких доз, органолептические свойства и др Е. di Magno и соавт. (1977) [26] установили, что при приеме панкреатина только 22% трипсина и 8% липазы достигают тощей кишки в активной форме, необходимой для обработки химуса.

Следующим поколением панкреатических ферментов явились препараты, в которых действующее начало было покрыто системой оболочек (Панзинорм, Фестал, Дигестал и др). Однако их применение также вскоре обнаружило вышеуказанные недостатки и, кроме того, в каждой таблетке или драже появился балласт, что привело к значительному увеличению объема таблетки (более 3 мм) и к существенному ограничению для использования данных средств в педиатрической практике поскольку обломки таблетки травмировали слизистую, а основная часть препарата — ферменты — инактивировались желудочным содержимым. Инактивация панкреатических ферментов кислым желудочным соком привела к необходимости одновременного назначения антисекреторных препаратов — Н2-блокаторов гистаминовых рецепторов, ингибиторов протоновой помпы и других антацидов.

В последующей генерации энзимных средств эти недостатки удалось преодолеть путем резкого уменьшения объема таблетки (в среднем от 1,2 до 2,0 мм), повышения кислотоустойчивости за счет покрытия действующего начала тонкими полимерными пленками. Первым препаратом данной генерации стал предложенная в середине 70-х годов Панкреаза. Позднее появились Кreon®, Prolipase®, Cotazym®, Ultrasa®, Protilase®, Панцитрат® и др. При этом были на рынок были предложены вариации данных препаратов с различной активностью — от 4000 до 40000 FIP u. липазы. Учитывая достаточно большой ассортимент энзимных препаратов, поставляемых различными фирмами врачу необходимо ориентироваться в оценке активности, выражаемой в европейских и североамериканских единицах. В табл. 2. представлены такие единицы и соотношение между ними.

Таблица 2. Единицы измерения активности панкреатических ферментов

Липаза 1 Eur. Pharm.u. = IFIPu. = 1 U.S.P.u.
Протеазы 1 Eur. Pharm.u. = IFIPu. = 62,5 U.S.P.u.
Амилаза 1 Eur. Pharm.u. = IFIPu. = 4,15 U.S.P.u.

Обилие препаратов подвигнуло многих исследователей на сравнительные исследования в клинике [39]. Так, M. Otte et al. (1987) [37] сравнивая 14 препаратов пришли к выводу, что лишь 3 из них сохраняют высокую активность в течение 120 минут инкубации при рН 6,6. При этом наиболее предпочтительным средством оказался Кreon®. Сопоставление активности Кreon® и Prolipase® показало преимущества первого: более высокий процент высвобождения липазы при инкубации при рН 5,6 (85,9 и 14,4%); более высокий коэффициент всасывания жира (89,98 и 88,95%) и коэффициент всасывания азота (86,09 и 84,75%) [28].

Кreon является микросферической формой панкреатина из поджелудочной железы свиньи, оптимально сбалансированный по составу липазы, амилазы и протеаз/ Микросферы Кreon® имеют защитное кислотоустойчивое покрытие, устойчивое к агрессии желудочного сока и заключены в желатиновую капсулу.

Все это позволило добиться создания высокой дозы ферментов вследствие равномерного распределения энзимов в двенадцатиперстной и тонкой кишке и растворения полимерной пленки только в оптимуме рН >5,5 [5, 39]. Таким образом, удалось соблюсти стандартные требования, предъявляемые к фармакологическим препаратам, включающие:

  1. нетоксичность,
  2. хорошую переносимость,
  3. отсутствие существенных побочных эффектов,
  4. оптимум действия в интервале рН 5-7,
  5. устойчивость к действию соляной кислоты, пепсинов и других протеаз,
  6. содержание достаточного количества активных пищеварительных ферментов, oбеспечивающих расщепление нутриентов,
  7. сроки хранения препаратов.

Вместе с тем это позволило использовать данные средства, как у взрослых, так и у детей любой возрастной группы.

При лечении Креоном сохраняется трофическая функция холецистокинина [25]. Как удалось установить, протеиназы Pseudomonas aeruginosa не оказывают ингибирующего действием на ферменты Креона, а применение данного средства существенно не влияет ни на уровень ингибиторов протеаз (α1-ингибитор протеаз и α2-макроглобулин), ни на прирост специфических антител в крови с негативным эффектом для пациентов [27].

Рис. 2. Происхождение абдоминальных болей при нарушениях панкреатической секреции и их купирование

Как указывалось выше Кгеоn® лишен такого осложнения, как стриктура толстой кишки. Кроме того, назначение Креона повышает уровень жирорастворимых витаминов в организме [7, 36].

Помимо гидролитического действия (и благодаря нему) панкреатические ферменты могут купировать болевой синдром, что иллюстрирует рис. 1. Следует указать, что назначение экстрактов панкреатических энзимов необходимо проводить строго индивидуально и доза препарата должна соответствовать степени внешнесекреторной недостаточности железы в отличие от традиционных средневозрастных доз.

Клинический опыт применения Креона обнаружил его аналгезирующее действие, частично за счет того, что панкреатические экстракты активируют опиоидные пептиды, частично за счет способности трипсина снижать уровень холецистокинина в плазме крови [26, 34].

В последнее время специалистами компании SOLVAY PHARMA созданы новые современные формы ферментных препаратов поджелудочной железы, содержащие минимикросферы (Креон 10000 и Креон 25000), которые считаются препаратами первого выбора в ферментной терапии. При новом процессе производства стало возможным значительно уменьшить размер желатиновой капсулы. Так, размер капсулы препарата Креон 10000, содержащей минимикросферы, в два раза меньше размера капсулы Креон, которая содержит микросферы. Новые формы препарата Креон 10000 и Креон 25000 отвечают всем требованиям, предъявляемым к современному ферментному препарату.

  1. Состав ферментов в физиологической пропорции.
    Креон 10000 содержит 150 мг панкреатина, что соответствует 8 000 М.ед амилазы, 10 000 М.ед липазы и 600 М.ед протеаз.
    Креон 25000 содержит 300 мг панкреатина, что соответствует 18 000 М.ед амилазы, 25 000 М.ед липазы и 10 000 М.ед протеаз.
  2. Кислотоустойчивость
    Обеспечивается в препаратах Креон 10000 и Креон 25000 благодаря наличию очень эффективной кислотоустойчивой и растворимой в кишечнике оболочки, покрывающей минимикросферы.
  3. Равномерное перемешивание с пищей и одновременный пассаж ее через привратник в двенадцатиперстную кишку.
    Благодаря новой технологии удалось уменьшить размеры минимикросфер до диаметра 1,0-1,2 мм, что позволило значительно увеличить площадь соприкосновения ферментов с пищевым химусом и, следовательно, повысить эффективность Креона на 25%, а также добиться 100% высвобождения ферментов в двенадцатиперстной кишке [10].
    Креон назначается врачами чаще, чем его аналоги и, следовательно, его действие является наиболее документированным.

5. Применение препарата Креон® при муковисцидозе

Муковисцидоз представляет собой системное мультиорганное заболевание наследственного характера, имеющее в своей основе поражение экзокринных желез организма. В настоящее время из более 250 описанных наследственных болезней обмена веществ в европеоидной популяции чаще всего встречается муковисцидоз у 1 из 2000-2500 новорожденных.

Муковисцидоз — полиморфное по клинике (выраженности, степени тяжести и др.) заболевания, т.е. дефект предопределен еще до рождения ребенка. Однако нам удалось установить, что далеко не у всех заболевание начиналось с рождения, у многих больных клиническая картина претерпела определенную эволюцию в виде трансформации клинических форм болезни, изменения степени тяжести. Следовательно, кроме генетических факторов на течение болезни оказывает влияние совокупность факторов среды На основании этих рассуждений можно построить гипотетическую формулу, иллюстрирующую соотношение генетических и экологических факторов:

Фм = Σ(НMi + СMi) — Σ(HNj + CNj), где Фм — фенотип по признаку муковисцидоза; НMi — наследственные факторы муковисцидоза; СMi — средовые неблагоприятные факторы (диета, пневмония, инфекция и т.д.); HNj — наследственные благоприятные факторы, CNj — средовые благоприятные факторы (диета, лечение, диспансеризация и т.д.).

Из данной модели следует, что если Σ(НMi + СMi) > Σ(HNj + CNj), то проявление заболевания налицо, а если в данном уравнении поставить знак = или

Таблица 3. Изменение характера стула у больных муковисцидозом в процессе лечения препаратом Кreon®

Средняя частота стула в сут.Консистенция (к-во больных):
жидкий, жирный
оформленный
4,1 2,2
20
9
4
15

Нормализация характера стула привела к тому, что у всех 4-х больных с выпадением прямой кишки данное аноректальное осложнение исчезло.

У всех больных после лечения в копроцитограмме исчез нейтральный жир. О нарушении переваривания жира более точно можно судить по данным иодолиполовой пробы, суть которой заключается в обнаружении иода в разведениях мочи от 1 : 1 до 1 : 32 после перорального приема иодолипола. Установлено, что содержание иода в моче находится в прямой пропорциональной зависимости от уровня интестинальной липазы, поскольку в составе принимаемого внутрь иодолипола жир соединен с иодом.

Как показали результаты исследования после проведенного лечения у больных существенно улучшились показатели всасывания жира: среднегеометрическая разведения мочи до лечения составила 0,66±0,03 log2; после лечения — 1,23±0,04 log2 (p

Активация протеаза сыворотки крови при анафилаксии

Bronfenbrenner (1948) указывал, что при анафилаксии активируется протеаза сыворотки крови, которая повреждает клетки и освобождает токсический пептон и другие активные биологические вещества. Этот автор (1948) и другие придавали значение в механизме активации протеолиза при анафилаксии процессам угнетения антитриптической активности сыворотки крови. В 1946 г. Rocha и Silva наблюдали активацию фибринолизина в сыворотке крови у собак при анафилактическом и пептонном шоке. Unger (1947) обнаружил появление фибринолизитического фермента после инкубации органов сенсибилизированной морской свинки с антигеном. Rocha и Silva с сотр. полагают, что активация протеолитических ферментов вызывает освобождение гистамина из тканей при анафилаксии; в течение первых 2—8 минут пептонного шока триптическая активность возрастает.

Damgaard и Ungar (1952) показали, что у морской свинки при анафилактическом и пептонном шоке в моче появляется фибринолитический фермент, чего не наблюдалось при гистаминном шоке. Недавно Hahn и Lange (1956) выделили из сыворотки крысы протеазу, которую они назвали анафилотоксином. Ungar развил гипотезу об анафилотоксине (1953) в следующем виде: реакция антитела с антигеном активирует серокиназу, что вызывает освобождение из профибринолизина фибринолизина. Этот фермент вызывает протеолиз, в результате которого образуются гистамин и полипептиды.

Наряду с протеолизом имеются данные о значительных нарушениях липолиза при анафилаксии. Havel и Boyle (1954), Inderbitzin (1955) обнаружили, что при анафилактическом шоке у собак в сыворотке крови определяется «липоантилипемический» фактор. Korn (1955) назвал его «липопротеиназа».

Этот фактор появляется в сыворотке крови также при пептонном шоке и при введении крупномолекулярных углеводов или полисульфоэстеров крупномолекулярных углеводов. Его появление вызывает также введение гликогена, эстеров хондриатинсерной кислоты, гепарина и др. Эти вещества одновременно способны активировать протеазы в сыворотке крови. Эта активация увеличивается при инкубации с сывороткой в течение некоторого времени. Липолитический фактор освобождается из клеток при анафилактическом шоке. Предполагают, что с этим процессом можно связать гепаринемию. Вопрос об участии липолитического фермента в освобождении гистамина при анафилаксии не является решенным. Роль гистамина и других биологически активных продуктов при анафилаксии и других реакциях немедленного типа еще окончательно не установлена.

Участие этих веществ при анафилаксии освещено в работах Dragstedt (1941); Riley (1959), Speirs (1955). Dale (1953) обозначил как «аутофармакология» процесс освобождения веществ в тканях и в крови при анафилаксии. Сводка его работ приведена в специальном томе под его редакцией.

«Руководство по патологической физиологии»,
И.Р.Петров, А.М.Чернух

ПРОТЕОЛИТИ́ЧЕСКИЕ ФЕРМЕ́НТЫ

В книжной версии

Том 27. Москва, 2015, стр. 625

Скопировать библиографическую ссылку:

ПРОТЕОЛИТИ́ЧЕСКИЕ ФЕРМЕ́НТЫ (про­теа­зы), груп­па фер­мен­тов клас­са гид­ро­лаз, ка­та­ли­зи­ру­ют внут­ри- и вне­кле­точ­ное рас­ще­п­ле­ние (про­те­о­лиз) пеп­тид­ных свя­зей C(O) ─ NH в бел­ках и пеп­ти­дах жи­вых ор­га­низ­мов. Вы­де­ля­ют две под­груп­пы П. ф.: эк­зо­пеп­ти­да­зы (пеп­ти­да­зы), от­ще­п­ля­ют ами­но­кис­ло­ты с амин­но­го ( ами­но­пеп­ти­да­зы ) или кар­бо­ксиль­но­го ( кар­бок­си­пеп­ти­да­зы ) кон­ца мо­ле­ку­лы бел­ка или пеп­ти­да; эн­до­пеп­ти­да­зы (про­теи­на­зы; этот тер­мин ино­гда ис­поль­зу­ет­ся так­же как си­но­ним тер­ми­на «П. ф.»), гид­ро­ли­зу­ют пре­им. внутр. пеп­тид­ные свя­зи. Боль­шин­ст­во изу­чен­ных П. ф. син­те­зи­ру­ют­ся в ви­де не­ак­тив­ных пред­ше­ст­вен­ни­ков – про­фер­мен­тов, или зи­мо­ге­нов. Их ак­ти­ва­ция про­ис­хо­дит пу­тём ог­ра­ни­чен­но­го про­тео­ли­за – из­би­ра­тель­но­го гид­ро­ли­за оп­ре­де­лён­ных пеп­тид­ных свя­зей, про­те­каю­ще­го ли­бо ав­то­ка­та­ли­ти­че­ски, ли­бо под дей­ст­ви­ем др. про­теи­наз, и обыч­но со­про­во­ж­да­ет­ся от­ще­п­ле­ни­ем пеп­ти­дов. П. ф. раз­но­об­раз­ны по фи­зи­ко-хи­мич. свой­ст­вам. В за­ви­си­мо­сти от ло­ка­ли­за­ции П. ф. про­те­о­лиз про­ис­хо­дит при разл. зна­че­ни­ях pH. Напр., пеп­син и га­ст­рик­си­ны же­луд­ка – при pH 1,5–2, фер­мен­ты ли­зо­сом – при pH 4–5, П. ф. сы­во­рот­ки кро­ви, тон­ко­го ки­шеч­ни­ка – при ней­траль­ных или сла­бо­ще­лоч­ных зна­че­ни­ях. Не­ко­то­рые П. ф. в ка­че­ст­ве ко­фак­то­ра ис­поль­зу­ют ио­ны ме­тал­лов (в т. ч. кол­ла­ге­на­за, тер­мо­ли­зин). П. ф. име­ют раз­ную суб­страт­ную спе­ци­фич­ность, ко­то­рая оп­ре­де­ля­ет­ся в осн. осо­бен­но­стя­ми бо­ко­вых групп ами­но­кис­лот. Так, напр., трип­син гид­ро­ли­зу­ет свя­зи, об­ра­зо­ван­ные кар­бок­силь­ной груп­пой осно́вных ами­но­кис­лот – ли­зи­на и ар­ги­ни­на, а эла­ста­за – ами­но­кис­лот с не­боль­ши­ми бо­ко­вы­ми це­пя­ми – ала­ни­на и се­ри­на. На рас­ще­п­ле­ние пеп­тид­ных свя­зей влия­ет так­же их дос­туп­ность при на­ли­чии про­стран­ст­вен­ной струк­ту­ры гид­ро­ли­зуе­мо­го суб­стра­та. Фер­мен­ты с уз­кой суб­страт­ной спе­ци­фич­но­стью (напр., кол­ла­ге­на­за, кал­лик­ре­ин) гид­ро­ли­зу­ют пеп­тид­ные свя­зи, об­ра­зо­ван­ные стро­го оп­ре­де­лён­ны­ми ами­но­кис­лот­ны­ми ос­тат­ка­ми, фер­мен­ты с ши­ро­кой суб­страт­ной спе­ци­фич­но­стью (в т. ч. пеп­син, па­па­ин) – свя­зи, об­ра­зо­ван­ные мно­ги­ми ами­но­кис­ло­та­ми. В плаз­ме кро­ви и др. био­ло­гич. жид­ко­стях, а так­же в раз­ных клет­ках и тка­нях при­сут­ст­ву­ют бел­ко­вые ин­ги­би­то­ры П. ф., ко­то­рые мо­гут бло­ки­ро­вать ак­тив­ность отд. фер­мен­тов или групп фер­мен­тов. Бла­го­да­ря им осу­ще­ст­в­ля­ет­ся ре­гу­ля­ция ак­тив­но­сти П. ф. в фи­зио­ло­гич. ус­ло­ви­ях, что пре­до­хра­ня­ет бел­ки от не­кон­тро­ли­руе­мо­го рас­ще­п­ле­ния.

Протеолитические ферменты А. Протеазы растительного происхождения

В настоящее время для повышения коллоидной стойкости пива в основном используют протеолитические ферменты, предотвращающие белковые помутнения, а также ферменты, позволяющие получить глубоко выброженное пиво.

При использовании протеаз необходимо помнить, что при слишком глубоком расщеплении белков получается пустое пиво с плохой пенистостью, а также с измененным вкусом; при недостаточном же расщеплении белков брожение идет вяло, и дека почти не образуется.

Препараты микробного происхождения не могут гарантировать необходимую степень расщепления белков. Для этой цели используются растительные протеазы, в частности, папаин. Его получают из плодов дынного дерева Carica papaja. Такого рода препараты, но с различными названиями, выпускают многие западные фирмы.

На нашем рынке этот фермент известен под названием Коллупулин (фирма Qist-brocades) или Чилко (голландской фирмы Noarderi). Коллупулин — это продукт, содержащий цистеиновую протеазу, разрушающую протеины пива, которые связываются с ПФ и образуют холодное помутнение. Важно, что этот фермент не влияет на вкус и запах пива и не снижает его пеностойкость. Его расход может составлять от 1 до 5 г на 1 гл пива. Препарат добавляют либо в лагерные танки, либо вводят в трубопровод во время перекачки пива из бродильного аппарата в чан дображивания. Следует обратить внимание на то, что для эффективного действия фермента pH пива должен находиться в пределах от 4,1 до 4,5.

Разработан способ получения пива с длительным сроком хранения, который основан на применении протеолитического фермента коллагеназы. Этот препарат по своим свойствам не уступает папаину (В. Тихонов, 1993).

Б. Бактериальные протеазы

Из отечественных ферментных препаратов, содержащих протеазы, для стабилизации коллоидов пива известен отечественный бактериальный ферментный препарат протосубтилин Г10Х. Кроме того, для получения пива с высокой степенью сбраживания применяют грибной препарат Амилоризин П10Х. Отмечается, что протеолитическая способность протосубтилина выше, чем у импортных препаратов, но стабилизирующая активность выше у последних.

Отмечено, что иногда при использовании ферментных препаратов пиво в процессе хранения приобретает привкус, несвойственный свежему продукту (например, хлебный). Особенно это ощущается в светлом пиве. В связи с этим следует обращать внимание на термостабильность ферментов, так как термостабильные ферменты могут остаться в пиве даже после пастеризации и изменять химический состав пива во время хранения. Так, амилоризин и глюкоамилазы фирмы Rapidase (Франция) термостабильны, а растительные ферменты и протосубтилин — термолабильны.

Из импортных ферментов предлагается бактериальная протеаза Brewers Protease фирмы ЕНР, получаемая из Bacillus subtilis. Этот фермент увеличивает содержание аминного азота, т. е. это экзопротеаза, в то время как для повышения коллоидной стойкости пива важнее действие эндопептидаз, уменьшающих молекулярную массу высокомолекулярных белков (ВМБ). Влияние фермента на стойкость пива может быть опосредованным, так как при высоком содержании аминного азота в сусле процесс главного брожения интенсифицируется, в результате чего в пенном слое будут образовываться комплексы типа белок-белок. Фермент рекомендуется вносить в затор из расчета 0,4-2,0 кг на 1 т зерна (ячменя). Максимальная активность фермента проявляется при температуре 45-50 °С, он инактивируется при 85 °С в течение 10 мин. Стабильная активность препарата наблюдается при pH = 5,5-8,5.

Для повышения степени сбраживания сусла и улучшения его фильтрации используются другие бактериальные ферменты, например, комплексный ферментный препарат Церимикс, в состав которого входят α-амилаза, ß-глюканаза и протеазы. Кроме того, для этой цели могут использоваться Фунгамил, Целлюкласт и многие другие (раздел 8).

Силикагели

Одной из причин возникновения помутнения пива является содержание в нем комплексов типа белок-полифенолы, белок-белок, белок-нуклеиновые кислоты. Для предотвращения их образования используют силикагели, которые получают из аморфного кремнезема. На рынке можно встретить также специальные силикагели, обладающие высокой адсорбционной способностью. Это КиГель-продукты и Кизель-гели. Все эти препараты избирательно адсорбируют белки и одновременно с этим частично удаляются ПФ, которые входят в белково-дубильные комплексы (табл. 11.8).

Таблица. 11.8 Влияние концентрации силикагеля на содержание в пива белков и полифенолоа

Доза силикагеля, г/гл Содержание компонентов, мг/л
Проантоцианидины Катехин Азот, осаждаемый MgSО4
10,3 7,8
9,1 7,8
7,7 8,6
9,5 7,7

Важными параметрами силикагеля с точки зрения стабилизации пива являются поверхность, диаметр пор, объем пор (рис. 11.3), распределение величин фракций, значение pH раствора силикагеля в воде, структура, чистота, содержание воды, диспергирующая способность (табл. 11.9). Несомненное преимущество данных стабилизирующих средств — простота их применения.

Таблица 11.9 Физические параметры силикагелей, предназначенных для стабилизации пива

Параметр Значение
Поверхность 300 1000 м 2 /г
Диаметр пор 30-120 А*
Объем пор 0,4-1,6 мл/г
Величина фракции 5-20 мкм**
Массовая доля сухих веществ 30-99 %
pH 5% водного раствора 4-8

Установлено, что применение силикагелевых препаратов не только не оказывает отрицательного влияния на вкусовые качества пива, но даже улучшает их, так как в процессе взаимодействия с силикагелем из пива удаляются многие вещества, которые отрицательно сказываются на вкусовом восприятии пива.

Иногда отмечается негативное влияние силикагеля на процесс пенообразования. Это связано с тем, что пиво с высокой степенью очистки обладает недостаточным количеством пенообразующих белков. Для избегания этого необходимо строго контролировать диаметр пор, чтобы не удалялись пенообразующие белки с молекулярной массой 10 000-50 000 D (рис. 11.4).

В настоящее время на основе кремния выпускают следующие препараты: ксерогели, гидрогели, гидротизированный силикагель (табл. 11.9).

Ксерогели

Ксерогели представляют собой тонкоразмолотый сухой продукт с массовой долей сухих веществ 95-99% (табл. 11.10). Он имеет площадь поверхности контакта фаз около 466 м 2 Д (Lucilite PC около 800 м 2 /кт), объем пор 1-1,2 мл/г, диаметр пор в основном 5-14 нм (BG-6 — 14 нм). Недостатком ксерогелей является их мелкодисперсность, что может снижать пропускную способность фильтра

Таблица 11.10 Технологическая характеристика силикагелей и кизельгелей (по данным фирм-изготовителей)

Препарат Торговая марка Массовая доля СВ, % Примечание
Ксерогель Lucilite PC
Stabifix
Stabiquick-Sedi Состоит из ксерогеля и бентонита натрия. В процессе перекачки пива из бродильного в лагерный, одновременно осаждение дрожжей
Daraclar915 Более 98,5 На стадии фильтрования пива
Daraclar 7500 Более 99 При фильтровании пива. В бродильно-лагерные танки
SiL-PROOFBG-6 95-98 Возможно использовать в комбинации с ПВПП
Кестросорб 3015 Более 65 Идентичен средним кизельгурам
Кестрисорб 1015 Более 90 Идентичен тонким кизельгурам
Stabifix W Во время кизельгуровой фильтрации
Гидрогель Кестрисорб 6015 Менее 50% Идентичен грубым кизельгурам
Lucilite В форфас, на стадии фильтрования пива
Daraclar 920 43-37 На стадии фильтрования пива
КиГель Меди При дображивании в лагерном отделении
КиГель Геро В процессе кизельгуровой фильтрации
SiL-PROOF BG-12H В форфас, во время кизельгуровой фильтрации

Гидрогели

Технология приготовления этого продукта точно такая же, как и у ксерогеля, однако в отличие от него массовая доля сухих веществ в гидрогеле составляет 35-43% (табл. 11.10). В результате во время применения этого препарата можно избежать образования пыли. Какими-либо другими качественными или экономическими преимуществами он не обладает.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Правильное пищеварение при ревматоидном артрите

Правильное пищеварение — во многом залог здоровья человека. Нарушения пищеварения могут быть причиной развития многих заболеваний, в том числе и ревматиоидным артритом (РА). По современным данным, у многих больных РА наблюдается нехватка веществ, отвечающих за пищеварение (включая соляную кислоту и ферменты поджелудочной железы), поэтому незавершенное переваривание пищи может послужить как раз тем решающим фактором, который вызовет болезнь.

Вы наверняка знаете, что пищу необходимо тщательно пережевывать. Хорошее пищеварение начинается именно с этого. Во время пережевывания пищи мы не просто измельчаем ее. Пища смешивается со слюной, которая содержит ферменты (амилазу, мальтазу), превращающие сложные углеводы (полисахариды) в простые (моносахариды).

Затем пища попадает по пищеводу в желудок. Первостепенные функции желудка — переваривание белков и ионизация минералов. Желудок выделяет соляную кислоту, различные гормоны и ферменты, а также активирует выделение пищеварительных ферментов поджелудочной железой и желчи желчным пузырем.

Уровень кислотности желудочного сока

У многих людей, страдающих РА, наблюдается нехватка соляной кислоты в желудочном соке. Гипохлоргидрией называют недостаточное выделение кислоты, ахлоргидрией — полное ее отсутствие в желудочном соке. Для выявления дефицита желудочной кислоты проводят желудочный анализ Гейдельберга: пациент глотает электронную капсулу, прикрепленную к нити. Капсула замеряет уровень рН в желудке и передает радиосигнал на приемник, который записывает информацию. После завершения тестирования капсула извлекается.

Для того чтобы определить, в достаточном ли количестве выделяется у вас желудочная кислота, можно использовать и более простые и доступные приемы.

Вот наиболее распространенные признаки пониженной кислотности желудочного сока:

вздутие живота, отрыжка, изжога и метеоризм, возникающие сразу после приема пищи;

ощущение переполненности желудка после еды;

несварение, диарея или запор;

разнообразные пищевые аллергии;

тошнота после приема добавок;

зуд в области прямой кишки;

повышенный уровень газообразования;

непереваренная пища в фекалиях;

хронические кишечные паразиты или ненормальная кишечная флора;

слабые, слоящиеся ногти;

расширенные кровеносные сосуды на щеках и носу;

хронические грибковые инфекции (Candida albicans).

Для регулирования уровня кислотности принимают препараты, содержащие соляную кислоту. Одну таблетку или капсулу, содержащую 10 гранов (600 мг) соляной кислоты, принимают во время полноценного приема пищи. Если это не вызовет ощущения жжения или дискомфорта в области желудка, во время каждой такой же по объему трапезы принимают на одну таблетку или капсулу больше, чем в прошлый раз. Дозу повышают до 7 таблеток или до тех пор, пока не начнет ощущаться жжение или дискомфорт.

Ощущение жжения в желудке означает, что вы приняли слишком много таблеток для такого количества пищи и в следующий раз вам нужно принять на одну таблетку меньше. Через какое-то время снова попытайтесь увеличить дозу, чтобы убедиться, что жжение было вызвано именно соляной кислотой, а не чем-то другим.

После того как вы определите самую большую для вас дозу, не вызывающую неприятных ощущений, придерживайтесь ее во время всех аналогичных полноценных приемов пищи. Если вы съели меньше обычного, нужно уменьшить и количество таблеток. Если вы принимаете несколько таблеток, распределите их на весь прием пищи.

Когда способность вашего желудка к производству необходимого для переваривания пищи количества кислоты начнет восстанавливаться, вы снова почувствуете жжение и будете вынуждены снизить дозу.

Ферменты поджелудочной железы

Поджелудочная железа выделяет ферменты, необходимые для переваривания и усвоения пищи. Каждый день этот орган выбрасывает в тонкую кишку около 1,4 л поджелудочного сока. В соке содержатся ферменты, расщепляющие белковые вещества (трипсин и др.), жиры (липаза) и углеводы (амилаза, мальтаза).

Наиболее распространенные симптомы недостаточной секреции поджелудочной железы: вздутие и дискомфорт в области живота, газы, несварение, выход непереваренной пищи со стулом. Развернутый анализ кала помогает определить количество ферментов, выброшенных в кишечник поджелудочной железой, и позволяет установить, насколько здоровой является бактериальная флора.

Препараты, содержащие ферменты поджелудочной железы, изготавливаются из свиных поджелудочных желез. Чаще всего такие препараты используются при лечении нарушений пищеварения, пищевой аллергии и аутоиммунных заболеваний, таких как РА.

Значение протеолитических ферментов (протеаз)

Если для переваривания жиров и углеводов ферменты поджелудочной железы не так уж необходимы, то для нормального переваривания белков протеазы имеют решающее значение. Незавершенное переваривание белков создает массу проблем для организма, включая возникновение аллергических реакций и формирование токсических веществ, образующихся в процессе гниения.

Помимо переваривания белков, протеазы выполняют и другие важные функции. Протеазы очень эффективно борются с пищевой аллергией, это было доказано еще в 30—40-х годах прошлого века. Обычно люди, организм которых не вырабатывает эти ферменты в достаточном количестве, страдают от различных проявлений пищевой аллергии. Видимо, что к таким людям относятся и многие больные РА.

Препараты ферментов поджелудочной железы и протеазы доказали свою полезность при лечении многих острых и хронических воспалительных состояний, в том числе РА. Они предотвращают воспаление тканей, а также препятствуют формированию тромбов

Гниением (разложением) называют процесс расщепления белкового вещества бактериями.

Когда протеазы используются при лечении РА, они, помимо всего прочего, предотвращают накапливание иммунных комплексов в тканях и понижают уровень их циркуляции. А чем ниже этот уровень, тем лучше состояние больного.

Ферменты поджелудочной железы входят в БАД (биологически активные добавки). Достаточно мощные и эффективные БАД содержат комплекс ферментов, например панкреатин, бромелайн, папаин, трипсин, липазу, амилазу.

ПИШЕВЫЕ ЖИРЫ

В состав пищевых продуктов входят так называемые «невидимые» жиры (они содержатся в мясе, рыбе, молоке и других пищевых продуктах) и «видимые»—специально добавляемые в пищу растительные масла и животные жиры. Пищевые жиры — источник незаменимых жирных кислот, фосфатидов (лецитин), витаминов A, D, Е.

В состав жиров входят насыщенные жирные кислоты, твердые при комнатной температуре (например, стеариновая и пальмитиновая) и ненасыщенные, жидкие (например, олеиновая, линолевая, линоленовая). Животные жиры содержат больше насыщенных кислот, а растительные жиры — больше ненасыщенных.

Арахидоновая кислота, которая как и все насыщенные жиры содержится в продуктах животного происхождения, может способствовать воспалительному процессу. Поэтому исключение мяса из рациона больного РА снижает воспалительные процессы.

Подавить воспалительную реакцию можно и другим путем. Для этого нужно, чтобы в организм поступала линоленовая кислота (омега-3), которая превращается в незаменимую эйкозапентаеновую кислоту (ЭПК). В результате потребления омега-3 жирных кислот воспалительные и аллергические реакции значительно уменьшаются. Для получения такого эффекта необходимо добавлять в пищу ЭПК (1,8 г. ежедневно) или употреблять масло печени трески. Однако если вы включите в свое ежедневное меню скумбрию, сельдь или лосося, прием добавок может и не потребоваться. Вегетарианцы могут употреблять льняное масло, дающее сходный эффект.

Помимо линоленовой кислоты к полиненасыщенным жирным кислотам относятся линолевая (омега-6) и олеиновая (омега-9) кислоты. Об их пользе написано множество книг. И я советую всем, кто желает сохранить здоровье и продлить молодость, употреблять в пищу содержащие их продукты.

Масла черной смородины, огуречника аптечного и примулы вечерней содержат гаммалиноленовую кислоту (ГЛА) и омега-6 кислоту. Они могут оказать существенную помощь в лечении ревматоидного артрита, так как обладают способностью снимать воспаление. Добавление ГЛА в пищу оказывает желаемое действие в сочетании с омега-3 кислотой, если при этом ограничить потребление продуктов, содержащих арахидоновую кислоту. Но при лечении РА лучше всего употреблять льняное масло, которое является естественным источником омега-3 и омега-6 кислот, да и стоит значительно дешевле.

В литературных источниках можно найти великое множество рецептов питания, в которые входит льняное масло, например вегетарианский плов на льняном масле. Дневная доза льняного масла составляет всего 1 ст. ложку. Льняное масло чаще всего можно найти в аптеке, встречается оно и в обычных магазинах, в отделах диетических продуктов.

ЗНАЧЕНИЕ ПИЩЕВЫХ АНТИОКСИДАНТОВ

Еще раз подчеркну — больным РА совершенно необходимо употреблять в пищу много свежих овощей и фруктов. Правильная диета — ключевой момент в лечении этого серьезного заболевания. Овощи и фрукты содержат питательные вещества-антиоксиданты, такие как витамин С, бета-каротин, витамин Е, селен и цинк. Принимая витаминные и минеральные комплексы, вы не сможете восполнить отсутствие на вашем столе свежих овощей и фруктов, поскольку последние включают и другие вещества, например весьма действенные при лечении РА флавоноиды.

Флавоноиды

Флавоноиды — это группа растительных пигментов, отвечающих за окраску фруктов и цветов. Они же защищают растения от внешних воздействий. По последним медицинским данным, многие целебные свойства пищевых продуктов, соков, трав, пыльцы

и прополиса непосредственно связаны с содержанием в них флавоноидов. Их употребление имеет большое значение для человека, так как флавоноиды обладают противовоспалительными, противоаллергическими и противораковыми свойствами. Молекулы флавоноидов уникальны по своей активности в борьбе с разнообразными оксидантами и свободными радикалами.

Флавоноиды, отвечающие за окраску черники, ежевики, вишни, винограда, боярышника и многих цветов, называют антоцианидинами и процианидинами. Эти флавоноиды повышают содержание витамина С в клетках, снижают уровень проницаемости и ломкости малых кровеносных сосудов, защищают от вредного воздействия свободных радикалов и укрепляют суставные структуры. Эти флавоноиды весьма благотворно воздействуют на коллаген. Коллаген — самое распространенное белковое вещество в организме, он отвечает за сохранение целостности нашей соединительной ткани. А соединительная ткань удерживает вместе все ткани организма. Коллаген также содержится в сухожилиях, связках и хрящах. При РА, подагре и других воспалительных состояниях, охватывающих кости, суставы, хрящи и другие соединительные ткани, коллаген разрушается.

Антоцианидины и другие флавоноиды обладают уникальной способностью связывать друг с другом коллагеновые волокна, укрепляя таким образом естественное «переплетение» коллагена, за счет которого формируется межклеточное вещество соединительной ткани (хряща, сухожилия и т. п.);

предотвращают вредное воздействие свободных радикалов;

тормозят действие ферментов белых клеток крови — ферментов, которые в противном случае разрушали бы при воспалительном процессе коллагеновые структуры; предотвращают синтез и выделение веществ, способствующих развитию воспаления.

Эти замечательные свойства флавоноидов делают их незаменимым средством при лечении любых форм артрита. Я уже писала выше о том, что вишня хорошо помогает больным подагрой. Если вы страдаете какой-либо формой артрита, ешьте больше вишен и других продуктов, богатых флавоноидами. Имеет смысл также принимать БАД с флавоноидами. Такие флавоноиды, как кверцетин, обладают противовоспалительным действием, особенно в сочетании с протеолитическими ферментами.

Роль ферментов и цитокинов в патогенезе остеоартроза

Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

В последние годы большое внимание исследователей фокусируется на идентификации протеаз, ответственных за деградацию ВКМ суставного хряща при остеоартрозе. Согласно современным представлениям, важную роль в патогенезе остеоартроза играют матриксные металлопротеазы (ММП). У больных с остеоартрозом обнаруживают повышенный уровень трех представителей ММП — коллагеназ, стромелизинов и желатиназ. Коллагеназа ответственна за деградацию нативного коллагена, стромелизин — коллагена IV типа, протеогликанов и ламинина, ажелатиназа — за деградацию желатина, коллагенов IV, Vh XI типов, эластина. Кроме того, предполагают наличие еще одного фермента — аггреканазы, который обладает свойствами ММП и отвечает за протеолиз хрящевых протеогликановых агрегатов.

В суставном хряще человека идентифицированы три типа коллагеназ, уровень которых значительно повышен у больных остеоартрозом, — коллагеназа-1 (ММП-1), коллагеназа-2 (ММП-8) и коллагеназа-3 (ММП-13). Сосуществование трех разных типов коллагеназ в суставном хряще свидетельствует о том, что каждая из них играет свою специфическую роль. Действительно, коллагеназы-1 и -2 локализуются главным образом в поверхностной и верхней части промежуточной зоны суставного хряща, тогда как коллагеназу-3 обнаруживают в нижней части промежуточной и в глубокой зонах. Более того, результаты иммуногистохимического исследования продемонстрировали, что в процессе прогрессирования остеоартроза уровень коллагеназы-3 достигает плато и даже снижается, тогда как уровень коллагеназы-1 постепенно повышается. Имеются данные о том, что при остеоартрозе коллагеназа-1 главным образом участвует в воспалительном процессе в суставном хряще, тогда как коллагеназа-3 — в ремоделировании ткани. Экспрессируемая в хряще больных с ОА коллагеназа-3 осуществляет деградацию коллагена II типа более интенсивно, чем коллагеназа-1.

Из представителей второй группы металлопротеаз, стромелизинову человека идентифицированы также три — стромелизин-1 (ММП-3), стромелизин-2 (ММП-10) и стромелизин-3 (ММП-11). Сегодня известно, что только стромелизин-1 вовлечен в патологический процесс при остеоартрозе. В синовиальной мембране больных с остеоартрозом не определяется стромелизин-2, однако он обнаружен в очень малом количестве в синовиальных фибробластах больных с ревматоидным артритом. Стромелизин-3 также обнаружен в синовиальной оболочке больных с ревматоидным артритом вблизи фибробластов, особенно в зонах фиброза.

В группе желатиназ в хрящевой ткани человека идентифицировано только две — желатиназа 92 кД (желатиназа В, или ММП-9) и желатина-за 72 кД (желатиназа А, или ММП-2); у больных с остеоартрозом определяют повышение уровня желатиназы 92 кД.

Не так давно была идентифицирована еще одна группа ММП, которые локализуются на поверхности клеточных мембран и называются ММП мембранного типа (ММП-МТ). К этой группе принадлежат четыре фермента — ММП-МТ1 — ММП-МТ-4. Экспрессия ММП-МТ обнаружена в суставном хряще человека. Хотя ММП-МТ-1 обладает свойствами коллагеназы, оба фермента ММП-МТ-1 и ММП-МТ-2 способны активироватьжелатиназу-72 кД и коллагеназу-3. Роль этой группы ММП в патогенезе ОА требует уточнений.

Протеиназы секретируются в форме зимогена, который активируется другими протеиназами или органическими соединениями ртути. Каталитическая активность ММП зависит от наличия цинка в активной зоне фермента.

Биологическая активность ММП контролируется специфическими ТИМП. К настоящему времени идентифицированы три типа ТИМП, которые обнаруживают в суставных тканях у человека, — ТИМП-1-ТИМП-3. Четвертый тип ТИМП идентифицирован и клонирован, однако он до сих пор не был обнаружен в суставных тканях человека. Эти молекулы специфически связываются с активным центром ММП, хотя некоторые из них способны связывать активный центр прожелатиназы 72 кД (ТИМП-2, -3, -4) и прожелатиназы 92 кД (ТИМП-1 и -3). Данные свидетельствуют о том, что при ОА в суставном хряще существует дисбаланс между ММП и ТИМП, результатом которого является относительный дефицит ингибиторов, что, возможно, частично связано с повышением уровня активных ММП в ткани. ТИМП-1 и -2 обнаруживают в суставном хряще, они синтезируются хондроцитами. При остеоартрозе в синовиальной оболочке и синовиальной жидкости обнаружен только первый тип ТИМП. ТИМП-3 обнаруживают исключительно в ВКМ. ТИМП-4 почти на 50% имеет идентичную аминокислотную последовательность с ТИМП-2 и-Зина 38% — сТИМП-1. В других клетках-мишенях ТИМП-4 ответственен за модуляцию активации прожелатиназы 72 кД на поверхности клеток, что свидетельствует о важной роли в качестве тканеспецифического регулятора ремоделирования ВКМ.

Другим механизмом контролирования биологической активности ММП является их физиологическая активация. Существует мнение, что ферменты из семейства сериновых и цистеиновых протеаз, таких, как АП/плазмин и катепсин В соответственно, и являются физиологическими активаторами ММП. В суставном хряще больных с остеоартрозом обнаружен повышенный уровень урокиназы (уАП) и плазмина.

Несмотря на то, что в тканях сустава обнаруживают несколько типов катепсинов, наиболее вероятным активатором ММП в хряще считают катепсин-В. В тканях сустава человека обнаружены физиологические ингибиторы сериновых и цистеиновых протеаз. Активность ингибитора АП-1 (иАП-1), а также цистеиновых протеаз снижена у больных с остеоартрозом. Аналогично ММП/ТИМП — именно дисбалансом между сериновыми и цистеиновыми протеазами и их ингибиторами можно объяснить повышенную активность ММП в суставном хряше больных с остеоартрозом. Кроме того, ММП способны активировать друг друга. Например, стромелизин-1 активирует коллагеназу-1, коллагеназу-3 и желатиназу 92 кД; коллагеназа-3 активирует желатиназу 92 кД; ММП-МТ активирует коллагеназу-3, а желатиназа-72 кД потенциирует эту активацию; ММП-МТ также активирует желатиназу 72 кД. Цитокины можно разделить на три группы — деструктивные (провос-палительные), регуляторные (в том числе противовоспалительные) и анаболические (факторы роста).

Типы цитокинов (по van den Berg W.B. et al)

Лейкемический ингибирующий фактор

Мнсулиноподобные факторы роста

Костные морфогенетические белки

Морфогенетические белки, полученные из хряща

Деструктивные цитокины, в частности ИЛ-1, индуцируют увеличение высвобождения протеаз и угнетают синтез протеогликанов и коллагенов хондроцитами. Регуляторные цитокины, в частности ИЛ-4 и -10, угнетают продукцию ИЛ-1, увеличивают продукцию антагониста рецептора ИЛ-1 (ИЛ-1 РА) и снижают уровень и NO-синтазы в хондроцитах. Таким образом, ИЛ-4 противодействует ИЛ-1 по трем направлениям: 1) снижает продукцию, препятствует его эффектам, 2) увеличивает продукцию основного «скавенджера» ИЛ-1РА и 3) снижает продукцию основного вторичного «мессенджера» NO. Кроме того, ИЛ-4 снижает ферментативную деградацию ткани. В условиях in vivo оптимальный терапевтический эффект достигается при комбинации ИЛ-4 и ИЛ-10. Анаболические факторы, такие, какТФР-р и ИФР-1, реально не препятствуют продукции или действию ИЛ-1, а проявляют противоположную активность, например, стимулируют синтез протеогликанов и коллагена, подавляют активность протеаз, а ТФР-(3 еще и угнетает высвобождение ферментов и стимулирует их ингибиторы.

Провоспалительные цитокины отвечают за повышенный синтез и экспрессию ММП в суставных тканях. Они синтезируются в синовиальной оболочке, а затем диффундируют в суставной хрящ через синовиальную жидкость. Провоспалительные цитокины активируют хондроциты, которые в свою очередь также способны вырабатывать провоспалительные цитокины. В пораженных остеоартрозом суставах роль эффектора воспаления играют главным образом клетки синовиальной мембраны. Именно синовициты макрофагального типа секретируют протеазы и медиаторы воспаления. Среди них в патогенезе остеоартроза в наибольшей мере «задействованы» ИЛ-ф, ФНО-а, ИЛ-6, лейкемический ингибирующий фактор (ЛИФ) и ИЛ-17.

Биологически активные вещества, стимулирующие деградацию суставного хряща при остеоартрозе

  • Интерлейкин-1
  • Интерлейкин-3
  • Интерлейкин-4
  • ФНО-а
  • Колониестимулирующие факторы: макрофагальный (моноцитарный) и гранулоцитарно-макрофагальный
  • Субстанция Р
  • ПГЕ2
  • Активаторы плазминогена (тканевый и урокиназный типы) и плазмина
  • Металлопротеазы (коллагеназы. элластазы, стромелизины)
  • Катепсины А и В
  • Трилсин
  • Бактериальные липополисахариды
  • Фосфолипаза Аг

Данные литературы свидетельствуют, что ИЛ-ip и, возможно ФНО-а, — главные медиаторы деструкции суставных тканей при остеоартрозе. Однако до сих пор не известно, действуют ли они независимо друг от друга или между ними существует функциональная иерархия. На моделях остеоартроз у животных показано, что блокада ИЛ-1 эффективно предотвращает деструкцию суставного хряща, тогда как блокада ФНО-а приводит лишь к ослаблению воспаления в тканях сустава. В синовиальной мембране, синовиальной жидкости и хряще больных обнаружены повышенные концентрации обоих цитокинов. В хондроцитах они способны увеличивать синтез не только протеаз (главным образом ММП и АП), но и минорных коллагенов, например I и III типов, а также уменьшать синтез коллагенов II и IX типов и протеогликанов. Эти цитокины также стимулируют активные формы кислорода и такие медиаторы воспаления, как ПГЕ2. Результатом таких макромолекулярных изменений в суставном хряще при остеоартрозе является неэффективность репаративных процессов, что приводит к дальнейшей деградации хряща.

Вышеназванные провоспалительные цитокины модулируют процессы угнетения/активации ММП при остеоартрозе. Например, дисбаланс между уровнями ТИМП-1 и ММП в хряще при остеоартрозе может опосредоваться ИЛ-ip, так как исследование in vitro продемонстрировало, что повышение концентрации ИЛ-1 бета приводит к снижению концентрации ТИМП-1 и увеличению синтеза ММП хондроцитами. Синтез АП также модулируется ИЛ-1бета. Стимуляция in vitro хондроцитов суставного хряща с использованием ИЛ-1 вызывет дозозависимое увеличение синтеза АП и резкое снижение синтеза иАП-1. Способность ИЛ-1 уменьшать синтез иАП-1 и стимулировать синтез АП является мощным механизмом генерации плазмина и активации ММП. Кроме того, плазмин является не только ферментом, активизирующим другие ферменты, он также принимает участие в процессе деградации хряща путем прямого протеолиза.

ИЛ-ip синтезируется в виде неактивного предшественника с массой 31 кД (пре-ИЛ-ip), азатем, после отщепления сигнального пептида, превращается в активный цитокин с массой 17,5 кД. В тканях суставов, включая синовиальную мембрану, синовиальную жидкость и суставной хрящ, ИЛ-ip обнаруживают в активной форме, а в исследованиях in vivo продемонстрирована способность синовиальной мембраны при остеоартрозе секретировать этот цитокин. Некоторые сериновые протеазы способны превращать пре-ИЛ-ip в его биоактивную форму. У млекопитающих такие свойства обнаружены лишь у одной протеазы, которая относится к семье цистеиновых аспартатспецифических ферментов и называется ИЛ-1р-конвертирующий фермент (ИКФ, или каспаза-1). Этот фермент способен специфически превращать пре-ИЛ-ip в биологически активный «зрелый» ИЛ-ip с массой 17,5 кД. ИКФ — это профермент с молекулярной массой 45 кД (р45), который локализуется в клеточной мембране. После протеолитического расщепления проэнзима р45 с образованием двух субъединиц, известных как р10 и р20, которым свойственна ферментативная активность.

ФНО-а также синтезируется в виде мембранно-связанного предшественника с массой 26 кД; путем протеолитического отщепления он высвобождается из клетки в виде активной растворимой формы с массой 17 кД. Протеолитическое отщепление осуществляется ФНО-а-конвертирующим ферментом (ФНО-КФ), который относится к семье адамализинов. A.R. Amin и соавторы (1997) обнаружили повышенную экспрессию мРНК ФНО-КФ в суставном хряще больных с остеоартрозом.

Биологическая активация хондроцитов и синовицитов ИЛ-1 и ФНО-а опосредуется связыванием со специфическими рецепторами на поверхности клеток — ИЛ-Р и ФНО-Р. Для каждого цитокина идентифицировано два типа рецепторов — ИЛ-IP I и II типов и ФНО-Р I (р55) и II (р75) типов. За передачу сигналов в клетках тканей суставов отвечают ИЛ-1PI и р55. ИЛ-1Р I типа обладает несколько большей аффинностью к ИЛ-1бета, чем к ИЛ-1а; ИЛ-1Р II типа — наоборот, имеет большее сродство к ИЛ- 1а, чем к ИЛ- ip. До сих пор остается неясным, может ли ИЛ-IP II типа опосредовать сигналы ИЛ-1 или он служит только для конкурентного ингибирования связи ИЛ-1 с ИЛ-1РI типа. В хондроиитах и синовиальных фибробластах больных с остеоартрозом обнаруживают большое количество ИЛ-1PI и р55, что в свою очередь объясняет высокую чувствительность этих клеток к стимуляции соответствующими цитокинами. Этот процесс приводит как к повышению секреции протеолитических ферментов, так и к деструкции суставного хряща.

Не исключается участие ИЛ-6 в патологическом процессе при остеоартрозе. В основе этого предположения лежат следующие наблюдения:

  • ИЛ-6 увеличивает количество клеток воспаления в синовиальной мембране,
  • ИЛ -6 стимулирует пролиферацию хондроцитов,
  • ИЛ-6 усиливает эффекты ИЛ-1 в отношении повышения синтеза ММП и угнетения синтеза протеогликанов.

Однако ИЛ-6 способен индуцировать продукцию ТИМП, но не влияет на продукцию ММП, поэтому считают, что именно этот цитокин принимает участие в процессе сдерживания протеолитической деградации суставного хряща, который осуществляется по механизму обратной связи.

Еще одним представителем семьи ИЛ-6 является ЛИФ — цитокин, который вырабатывается хондроцитами, полученными от больных с остеоартрозом, в ответ на стимуляцию провоспалительными цитокинами ИЛ-ip и ФНО-а. Л ИФ стимулирует резорбцию протеогликанов хряща, а также синтез ММП и продукцию NO. Роль этого цитокина при остеоартрозе окончательно не выяснена.

ИЛ-17 — гомодимер массой 20-30 кД, обладающий ИЛ-1-подобным действием, однако значительно менее выраженным. ИЛ-17 стимулирует синтез и выделение ряда провоспалительных цитокинов, в их числе ИЛ-ip, ФНО-а, ИЛ-6, а также ММП в клетках-мишенях, например в макрофагах человека. Крометого, ИЛ-17 стимулирует продукцию NО хондроцитами. Подобно ЛИФ, роль ИЛ-17 в патогенезе ОА мало изучена.

Неорганический свободный радикал NО играет важную роль в деградации суставного хряща при ОА. Хондроциты, полученные от больных с остеоартрозом, вырабатывают большее количество NО как спонатанно, так и после стимуляции провоспалительными цитокинами в сравнении с нормальными клетками. Высокое содержание NO обнаружено в синовиальной жидкости и сыворотке крови больных с остеоартрозом — это результат увеличения экспрессии и синтеза индуцированной NO-синтазы (hNOC) — фермента, ответственного за продукцию NO. Недавно была клонирована ДНК хондроцитспецифической hNOC, определена аминокислотная последовательность фермента. Аминокислотная последовательность указывает на 50% идентичность и 70% сходство с hNOC, специфичной для эндотелия и нервной ткани.

NO угнетает синтез макромолекул ВКМ суставного хряща и стимулирует синтез ММП. Более того, увеличение продукции NО сопровождается снижением синтеза антагониста ИЛ-IP (ИЛ-1РА) хондроцитами. Таким образом, повышение уровня ИЛ-1 и снижение — ИЛ-1 РА приводит к гиперстимуляции NО хондроцитов, что в свою очередь ведет к усилению деградации хрящевого матрикса. Имеются сообщения о терапевтическом эффекте in vivo селективного ингибитора hNOC в отношении прогрессирования экспериментального остеоартроза.

Естественные ингибиторы цитокинов способны непосредственно препятствовать связыванию цитокинов с рецепторами клеточных мембран, снижая их провоспалительную активность. Естественные ингибиторы цитокинов можно разделить на три класса по способу их действия.

К первому классу ингибиторов относят антагонисты рецепторов, которые препятствуют связыванию лиганда с его рецептором путем конкуренции за связывающий центр. К настоящему времени такой ингибитор найден только для ИЛ-1 — это вышеупомянутый конкурентный ингибитор системы ИЛ-1/ИЛIP ИЛ-1 PA. ИЛ-1 РА блокирует многие эффекты, которые наблюдаются в тканях суставов при остеоартрое, включая синтез простагландинов синовиальными клетками, продукцию коллагеназы хондроцитами и деградацию В КМ суставного хряща.

ИЛ-1РА обнаруживают в различных формах — одной растворимой (рИЛ-1РА) и двух межклеточных (мкИЛ-lPAI и мкИЛ-1РАП). Аффинность растворимой формы ИЛ-1РА в 5 раз превышает таковую у межклеточных форм. Несмотря на интенсивный научный поиск, функция последних остается неизвестной. Экспериметы in vitro показали, что для угнетения активности ИЛ-1бета необходима концентрация ИЛ-1РА, в 10-100 раз превышающая норму, в условиях in vivo требуется тысячекратное повышение концентрации ИЛ-1РА. Этот факт может частично объяснить относительный дефицит ИЛ-1 РА и избыток ИЛ-1 в синовии больных с остеоартрозом.

Второй класс естественных ингибиторов цитокинов представлен растворимыми рецепторами цитокинов. Примером таких ингибиторов у человека, имеющих отношение к патогенезу остеоартроу, являются рИЛ-1Р и рр55. Растворимые рецепторы цитокинов представляют собой укороченные формы нормальных рецепторов, связываясь с цитокинами, они препятствуют их связыванию с мембранно-ассоциированными рецепторами клеток-мишеней, действуя по механизму конкурентного антагонизма.

Основным предшественником растворимых рецепторов являются мембранно-связанные ИЛ-1РП. Аффинность рИЛ-IP по отношению к ИЛ-1 и ИЛ-1 РА различна. Так, рИЛ-1РН обладает большим сродством к ИЛ-1 р, чем к ИЛ-1 РА, а рИЛ-1PI — проявляет большую аффинность к ИЛ-1РА, чем к ИЛ-ip.

Для ФНО также существуют два типа растворимых рецепторов — рр55 и рр75, как и растворимые рецепторы ИЛ-1, они образуются путем «шеддинга» (сброса). В условиях in vivo оба рецептора обнаруживают в тканях пораженных суставов. Роль растворимых рецепторов ФНО в патогенезе остеоартроза дискутируется. Предполагают, что в низких концентрациях они стабилизируют трехмерную структуру ФНО и повышают период полужизни биоактивного цитокина, тогда как высокие концентрации рр55 и рр75 могут снижать активность ФНО путем конкурентного антагонизма. Вероятно, рр75 может выступать как переносчик ФНО, облегчая его связывание с мембранно-ассоциированным рецептором.

Третий класс естественных ингибиторов цитокинов представлен группой противовоспалительных цитокинов, к которым относят ТФР-бета, ИЛ-4, ИЛ-10 и ИЛ-13. Противовоспалительные цитокины снижают продукцию провоспалительных, а также некоторых протеаз, стимулируют продукцию ИЛ-1РА и ТИМП.

Добавить комментарий